

CONCEPTUAL DRAINAGE STUDY

FOR

LITTLE LANE VILLAGE

APN:004-021-09 & 004-021-14

CARSON CITY, NEVADA 89702

Prepared for:

Mr. Fred Bates Bates Homes 9460 Double R Boulevard, Suite 103 Reno, NV 89521

Prepared by:

Manhard Consulting Ltd. 241 Ridge Street, Suite 400 Reno, NV 89501

TABLE OF CONTENTS

- I. INTRODUCTION
- II. EXISTING AND PROPOSED HYDROLOGY
- III. PROPOSED DRAINAGE FACILITIES
- IV. CONCLUSIONS
- V. EXHIBITS
 - FIGURE 1 VICINITY MAP
 - FIGURE 2 EXISTING HYDROLOGIC CONDITIONS
 - FIGURE 3 PROPOSED HYDROLOGIC CONDITIONS
- VI. APPENDICES

APPENDIX A – SUPPORTING CALCULATION DATA

I. Introduction

B. The following report is a Conceptual Drainage Study for Little Lane Village dated June 2019.

C. The contact person for the preparation of this report is Harold E. Dawson, P.E. at Manhard Consulting, 775-746-3500.

D. The project consists of 149 single family units, a community park, and associated roadways.

E. The existing Little Lane Village parcel numbers are APN 004-021-09 & 004-021-14 and are 21.48 acres in combined size. The parcel slopes from the northwest to the southeast at approximately 0.7% within the confines of the project site. The property lies within South ½ of Southeast ¼ of Section 17, Township 15 North, Range 20 East, M.D.B. & M. in Carson City, Nevada. Currently, the parcel is undeveloped and is proposed to be fully developed.

The subject property is currently zoned MFD within Carson City and is adjacent to developed areas:

North: Monson-Larsen Subdivision, zoned SF6/NB/PR

South: Country Club Estates Subdivision, zoned MH6

East: Saliman Manor Apartments, zoned RC

West: Arbor Villas, zoned MFA

F. Reference the included Vicinity Map (Figure #1).

II EXISTING AND PROPOSED HYDROLOGY

A. The intent of this hydrology study is to set a basis for the existing conditions for comparison to the proposed conditions, show the free draining flood water storage is preserved on site, and prove that the discharge created by the proposed development was

6/17/2019

Little Lane Village Carson City, NV

alleviated via a detention structure prior to discharging into the existing storm drain main located at the southeast corner of the proposed project site. There are a total of 1 existing drainage basin, 9 proposed drainage basins, and 1 detention pond for the proposed project. Basins are represented by their boundary as well as existing and proposed conditions. Reference Figure 2 (Existing Hydrologic Conditions) and Figure 3 (Proposed Hydrologic Conditions) for a visual representation of existing basins, proposed basins, and detention pond.

B. The Rational Method was used to determine storm flow discharge. Data used for the Rational Method was derived from the following: NOAA Atlas 14 precipitation intensity values for a 10-minute time of concentration and runoff coefficients are from the 2009 Truckee Meadows Regional Drainage Manual.

The SCS Curve Number Method was used to determine the storage volume required for the free draining flood water and increase of peak storm runoff. Data used for the SCS Curve Number Method was derived from the following: NOAA Atlas 14 precipitation depth values for the 5-year 24-hour storm, FEMA Flood Map Service Center for the flood plain limits and depths of flooding during the 100-year storm, USDA Web Soil Survey for the soil classification, and runoff curve numbers are from the 2009 Truckee Meadows Regional Drainage Manual.

The following is a description of each basin and its data characteristics. EX. represents the existing basin and P. represents the proposed basin.

BASIN EX-1 – The basin is 21.52 find acres in size. A runoff coefficient of 0.20 was used for the 5-year storm event, and a runoff coefficient value of 0.50 was used for the 100-year storm event (based on undeveloped range area) for the existing conditions. Using a 10-minute time of concentration, the intensity value for the 5-year storm event is 1.45 inches/hour, and the intensity value for the 100-year storm event is 3.52 inches/hour, respectively. Discharge sheet flows across the proposed project site in the existing condition in a northwest to southeast at approximately 0.7% discharging into the existing storm drain system.

BASINS P-1 TO P-9 – The basins total 21.52 acres in size. A runoff coefficient of 0.60 was used for the 5-year storm event, and a runoff coefficient value of 0.78 was used for the 100-year storm event (based 1/8-acre or Less (Multi-Unit)) for the proposed conditions of P-1 to P-8. A runoff coefficient of 0.05 was used for the 5-year storm event, and a runoff coefficient value of 0.30 was used for the 100-year storm event (based Open Space: Parks)) for the proposed conditions of P-9. Using a 10-minute time of concentration, the intensity value for the 5-year storm event is 1.45 inches/hour, and the intensity value for the 100-year storm event is 3.52 inches/hour, respectively. Discharge flows along the proposed roads at a slope of 0.5% and 2.4% and enters the proposed storm drain network at various catch basin locations and ends up at the proposed detention basin located in the southeast corner of the proposed project. The discharge will exit the detention basin at a rate that equals the discharge in the existing conditions ending up in the existing storm drain main located in the southeast corner of the proposed project site.

Below are the analyzed values for the existing and proposed 5-yr and 100-yr storm events.

	AREA (acres)	EXISTING (5-YR)	EXISTING (100-YR)	PROPOSED (5-YR)	PROPOSED (100-YR)
EX-1	21.52	6.2	37.9		
P-1	0.73			0.6	2.0
P-2	2.77			2.4	7.6
P-3	0.71			0.6	2.0
P-4	6.69			5.8	18.38
P-5	0.25			1.9	6.1
P-6	0.90			0.2	0.7
P-7	4.85			4.2	13.3
P-8	0.33			0.3	0.9
P-9	2.94			0.2	3.1
P-Total	21.52			14.9	49.6

C. The downsteam drainage consists of a 24-inch storm drain pipe followed by a 36-inch storm pipe, which follows Saliman Road. The storm drain system outlets into Linear Park and then leads to the Carson River.

6/17/2019

Little Lane Village Carson City, NV

- D. There is an existing drainage problem for the proposed project site as the site is currently in a localized low point which contributes to the parcel being in a floodplain Zone AO. There is a 12-inch pipe on site that serves as an outlet structure; however, there may be some backflow from downstream that causes ponding. The proposed detention pond will decrease the overall area of the floodplain and be able to provide the flood water storage currently on the parcel.
- E. The project site lies in Unshaded Zone X, Shaded Zone X (area of minimal flood hazard (500-yr floodplain)), and Zone AO (area of 1 and 2 feet of flood water depth during 100-yr storm).
- **F.** There is no existing irrigation on the proposed site.
- **G.** Reference Figure 2 (Existing Hydrologic Conditions) and Figure 3 (Proposed Hydrologic Conditions) for the tributary areas of existing basins, proposed basins, and detention pond.

III. PROPOSED DRAINAGE FACILITIES

- A. The project site will be graded to allow drainage to flow toward catch basins that enter manholes, and discharge through a proposed storm drain network and into a proposed detention facility located in the southeast corner of the project site. Discharge will then exit the detention basin in a condition less than or equal to the existing condition and enter the existing storm drain network. (Reference Figure 3, Proposed Hydrologic Conditions for a graphical interpretation of the proposed flow direction).
- **B.** Detention will be accomplished by meeting the requirements set forth in Division 14 of the Title 18 Appendix Carson City Development Standards. Based on the proposed verses existing conditions, the following table dictates the required detention for all storm events as per Section 14.4 of the Carson City Development Standards Table 3 illustrates

the overall increase in all storm events for the entire 21.52-acre property in the existing verses the proposed conditions.

TABLE 3 - STORM EVENT INCREASE (V-AC-FT)

Storm Event	Existing Volume (AC-ft)	Proposed Volume (AC-ft)	Net increase (AC-ft)	Volume to be used (AC-ft)
5	1.21	1.23	0.02	0.02
100	3.23	3.27	0.04	
FEMA		3.96		3.96
Total				3.98

Sizing was performed using the SCS Curve Number Method for a 5-year and 100-year 24-hour storm to find the net increase of runoff and using FEMA flood maps to calculate the current free draining water storage on-site. The water storage was calculated by multiplying the area of Zone AO by the median depth and dividing by acres (See Detention Pond Calculations in Appendix A). Using the more conservative numbers, the volume of the proposed detention basin will need to be at least 3.98 acre-ft and have an additional one-foot of freeboard.

IV. CONCLUSIONS

- A. This report has been prepared in compliance with Division 14 of the Title 18 Appendix Carson City Development Standards.
- **B.** This report is compliant with the most current FEMA standards. A CLOMR will need to be completed with the project as the floodplain limits of Zone AO will be redefined on the parcel. FEMA flood hazard designators have been labeled in the included Figures 2 and 3. Reference the included FEMA FIRMette from map #32031C3445G included in Appendix A.

C. According to the analysis contained within this report, the addition of a detention facility will detain the required amount of discharge in the required storm event with no negative impact to downstream facilities and surrounding areas.

6/17/2019

APPENDIX A

SUPPORTING CALCULATION DATA

LITTLE LANE VILLAGE DETENTION POND CALCULATIONS

SCS Runoff Curve Number Method

Ia= Initial Abstraction (in)

S= Potentail Maximum retention after Runoff begins (in)

P= Rainfall (in)

Q= Runoff (in)

CN= Curve Number

Vr= Runoff Volume (acre-ft)

Am= Drainage Area (mi²)

Existing Area (5 yr)		Existing Area (100 yr)		
Am	0.03	Am	0.03	
Р	1.84	Р	3.27	
CN	85	CN	85	
S	1.76	S	1.76	
la	0.35	la	0.35	
Q	0.68	Q	1.82	
Vr	1.21	Vr	3.23	

NOAA TMRDM https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_cont.html?bkmrk=nv

Sagebrush with grass understory, Poor soil, Class D (Table 702)

$$Q = \frac{(P - I_a)^2}{(P - I_a) + S} \qquad S = \frac{1000}{CN} - 10$$

$$V_r = 53.33 * Q * A_m$$
 $I_a = 0.2S$

Total Project (5 yr)

Residential Area Open Space Am 0.03 Am 0.00 Р 1.84 1.84 CN 85 CN 86 S 1.63 S 1.76 la 0.35 la 0.33 Q 0.68 Q 0.73 1.05 AC-ft Vr Vr 0.18 AC-ft NOAA TMRDM TMRDM https://hdsc.nws.noaa.gov/hdsc/pfds/pfds_map_cont.html?bkmrk=nv

TMRDM Residential Districts by Average Lot Size: 1/8 acre, Class B (Table 702)

Open Space, Poor Condition, Class C (Table 702)

Total Difference

1.23 AC-ft 0.02 AC-ft

Total Project (100 yr)

Reside	ential Area	Open Space	
Am	0.03	Am	0.00
Р	3.27	Р	3.27
CN	85	CN	86
S	1.76	S	1.63
la	0.35	la	0.33
Q	1.82	Q	1.90
Vr	2.81 AC-ft	Vr	0.46 AC-ft

Total

Difference

3.27 AC-ft 0.03 AC-ft

FEMA Flood Map Calculations						
Zone AO (ft)	Area (AC)	Volume (AC-ft)				
1	2.41	1.21				
2	1.84	2.76				
Total	4.25	3.96				

RATIONAL METHOD DISCHARGE RESULTS

BASIN	RUNOFF COEFFICIENT (5-YEAR)	RUNOFF COEFFICIENT (100-YEAR)	INTENSITY (5-YEAR)	INTENSITY (100-YEAR)	AREA	Q5	Q100
EX-1	0.20	0.50	1.45	3.52	21.52	6.24	37.88
P-1	0.60	0.78	1.45	3.52	0.73	0.64	2.01
P-2	0.60	0.78	1.45	3.52	2.77	2.41	7.60
P-3	0.60	0.78	1.45	3.52	0.71	0.62	1.96
P-4	0.60	0.78	1.45	3.52	6.69	5.82	18.38
P-5	0.60	0.78	1.45	3.52	2.24	1.95	6.15
P-6	0.60	0.78	1.45	3.52	0.25	0.22	0.68
P-7	0.60	0.78	1.45	3.52	4.85	4.22	13.32
P-8	0.60	0.78	1.45	3.52	0.33	0.29	0.91
P-9	0.05	0.30	1.45	3.52	2.94	0.21	3.11
P-Total					21.52	16.37	54.11

Equations: Q = CiA

National Flood Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards

The pin displayed on the map is an approximate point selected by the user and does not represent

an authoritative property location.

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 6/11/2019 at 3:30:50 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

NOAA Atlas 14, Volume 1, Version 5 Location name: Carson City, Nevada, USA* Latitude: 39.1583°, Longitude: -119.7542° Elevation: 4646.86 ft**

* source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

PDS-	based point precipitation frequency estimates with 90% confidence intervals (in inches/hour) ¹									
Duration				Avera	ge recurren	ce interval (y	/ears)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	1.14 (0.984-1.34)	1.42 (1.22-1.68)	1.90 (1.62-2.24)	2.35 (2.00-2.78)	3.11 (2.56-3.68)	3.79 (3.02-4.54)	4.62 (3.56-5.57)	5.59 (4.15-6.86)	7.15 (5.00-8.95)	8.56 (5.70-10.9)
10-min	0.864 (0.744-1.02)	1.08 (0.930-1.28)	1.45 (1.24-1.72)	1.79 (1.52-2.12)	2.36 (1.94-2.81)	2.89 (2.30-3.45)	3.52 (2.71-4.24)	4.26 (3.16-5.23)	5.44 (3.80-6.82)	6.51 (4.34-8.30)
15-min	0.716 (0.616-0.844)	0.892 (0.772-1.06)	1.19 (1.02-1.42)	1.48 (1.26-1.76)	1.95 (1.61-2.32)	2.38 (1.90-2.85)	2.90 (2.24-3.50)	3.52 (2.61-4.32)	4.50 (3.15-5.64)	5.38 (3.58-6.86)
30-min	0.482 (0.416-0.570)	0.600 (0.520-0.712)	0.802 (0.688-0.954)	0.996 (0.848-1.18)	1.32 (1.08-1.56)	1.61 (1.28-1.92)	1.95 (1.51-2.36)	2.37 (1.76-2.91)	3.03 (2.12-3.79)	3.62 (2.41-4.62)
60-min	0.299 (0.257-0.352)	0.371 (0.322-0.440)	0.497 (0.426-0.590)	0.617 (0.525-0.732)	0.814 (0.670-0.966)	0.994 (0.794-1.19)	1.21 (0.934-1.46)	1.47 (1.09-1.80)	1.87 (1.31-2.35)	2.24 (1.49-2.86)
2-hr	0.202 (0.180-0.232)	0.252 (0.224-0.288)	0.320 (0.283-0.366)	0.382 (0.334-0.437)	0.475 (0.404-0.546)	0.558 (0.464-0.648)	0.651 (0.526-0.764)	0.764 (0.598-0.910)	0.959 (0.717-1.19)	1.14 (0.822-1.44)
3-hr	0.161 (0.144-0.181)	0.201 (0.181-0.227)	0.252 (0.225-0.285)	0.294 (0.260-0.331)	0.354 (0.308-0.401)	0.406 (0.347-0.463)	0.463 (0.387-0.534)	0.536 (0.439-0.628)	0.655 (0.520-0.798)	0.770 (0.594-0.971)
6-hr	0.112 (0.101-0.125)	0.140 (0.126-0.157)	0.174 (0.155-0.194)	0.201 (0.178-0.225)	0.237 (0.208-0.267)	0.266 (0.230-0.301)	0.295 (0.250-0.337)	0.329 (0.274-0.381)	0.378 (0.307-0.445)	0.422 (0.334-0.505)
12-hr	0.073 (0.065-0.082)	0.092 (0.082-0.104)	0.116 (0.103-0.131)	0.135 (0.119-0.152)	0.160 (0.140-0.181)	0.179 (0.155-0.205)	0.199 (0.169-0.230)	0.220 (0.183-0.256)	0.247 (0.200-0.294)	0.269 (0.214-0.325)
24-hr	0.048 (0.044-0.053)	0.061 (0.055-0.067)	0.077 (0.070-0.084)	0.089 (0.081-0.098)	0.107 (0.097-0.118)	0.122 (0.109-0.134)	0.136 (0.121-0.151)	0.152 (0.134-0.168)	0.173 (0.150-0.193)	0.189 (0.162-0.213)
2-day	0.029 (0.026-0.032)	0.036 (0.033-0.041)	0.046 (0.042-0.052)	0.054 (0.049-0.061)	0.065 (0.058-0.074)	0.074 (0.066-0.084)	0.084 (0.073-0.095)	0.094 (0.081-0.107)	0.107 (0.091-0.123)	0.118 (0.099-0.137)
3-day	0.021 (0.019-0.024)	0.027 (0.024-0.030)	0.034 (0.031-0.038)	0.040 (0.036-0.045)	0.049 (0.043-0.055)	0.056 (0.049-0.063)	0.063 (0.055-0.071)	0.070 (0.061-0.080)	0.081 (0.069-0.093)	0.090 (0.075-0.104)
4-day	0.017 (0.015-0.019)	0.022 (0.019-0.025)	0.028 (0.025-0.032)	0.033 (0.029-0.038)	0.040 (0.036-0.046)	0.046 (0.040-0.052)	0.052 (0.045-0.060)	0.059 (0.050-0.067)	0.068 (0.057-0.078)	0.075 (0.062-0.088)
7-day	0.011 (0.010-0.013)	0.015 (0.013-0.016)	0.019 (0.017-0.021)	0.022 (0.020-0.025)	0.027 (0.024-0.030)	0.031 (0.027-0.035)	0.035 (0.030-0.039)	0.039 (0.033-0.044)	0.045 (0.038-0.051)	0.049 (0.041-0.057)
10-day	0.009 (0.008-0.010)	0.011 (0.010-0.013)	0.014 (0.013-0.016)	0.017 (0.015-0.019)	0.021 (0.018-0.023)	0.023 (0.020-0.026)	0.026 (0.023-0.030)	0.029 (0.025-0.033)	0.033 (0.028-0.038)	0.036 (0.030-0.042)
20-day	0.005 (0.005-0.006)	0.007 (0.006-0.008)	0.009 (0.008-0.010)	0.010 (0.009-0.011)	0.012 (0.011-0.014)	0.014 (0.012-0.015)	0.015 (0.013-0.017)	0.017 (0.015-0.019)	0.019 (0.016-0.021)	0.020 (0.017-0.023)
30-day	0.004 (0.004-0.004)	0.005 (0.005-0.006)	0.007 (0.006-0.007)	0.008 (0.007-0.009)	0.009 (0.008-0.010)	0.010 (0.009-0.011)	0.011 (0.010-0.013)	0.012 (0.011-0.014)	0.014 (0.012-0.016)	0.015 (0.013-0.017)
45-day	0.003 (0.003-0.004)	0.004 (0.004-0.004)	0.005 (0.005-0.006)	0.006 (0.005-0.007)	0.007 (0.006-0.008)	0.008 (0.007-0.009)	0.009 (0.008-0.010)	0.009 (0.008-0.010)	0.010 (0.009-0.012)	0.011 (0.010-0.012)
60-day	0.003 (0.002-0.003)	0.003 (0.003-0.004)	0.004 (0.004-0.005)	0.005 (0.005-0.006)	0.006 (0.005-0.007)	0.007 (0.006-0.007)	0.007 (0.006-0.008)	0.008 (0.007-0.009)	0.008 (0.007-0.009)	0.009 (0.008-0.010)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

NOAA Atlas 14, Volume 1, Version 5

Created (GMT): Fri Jun 7 16:11:25 2019

Back to Top

Maps & aerials

Small scale terrain

NOAA Atlas 14, Volume 1, Version 5 Location name: Carson City, Nevada, USA* Latitude: 39.1583°, Longitude: -119.7542° Elevation: 4646.86 ft**

* source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Sarah Dietz, Sarah Heim, Lillian Hiner, Kazungu Maitaria, Deborah Martin, Sandra Pavlovic, Ishani Roy, Carl Trypaluk, Dale Unruh, Fenglin Yan, Michael Yekta, Tan Zhao, Geoffrey Bonnin, Daniel Brewer, Li-Chuan Chen, Tye Parzybok, John Yarchoan

NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

PD	S-based բ	S-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹ Average recurrence interval (years)								
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.095 (0.082-0.112)	0.118	0.158 (0.135-0.187)	0.196 (0.167-0.232)	0.259 (0.213-0.307)	0.316 (0.252-0.378)	0.385	0.466 (0.346-0.572)	0.596	0.713
10-min	0.144 (0.124-0.170)	0.180 (0.155-0.213)	0.241 (0.206-0.286)	0.299 (0.254-0.354)	0.394 (0.324-0.468)	0.481 (0.384-0.575)	0.586 (0.452-0.706)	0.710 (0.526-0.871)	0.907 (0.634-1.14)	1.09 (0.723-1.38)
15-min	0.179 (0.154-0.211)	0.223 (0.193-0.264)	0.298 (0.256-0.354)	0.370 (0.315-0.439)	0.488 (0.402-0.580)	0.596 (0.476-0.712)	0.726 (0.560-0.875)	0.880 (0.652-1.08)	1.13 (0.787-1.41)	1.35 (0.896-1.72)
30-min	0.241 (0.208-0.285)	0.300 (0.260-0.356)	0.401 (0.344-0.477)	0.498 (0.424-0.591)	0.658 (0.542-0.781)	0.803 (0.642-0.959)	0.977 (0.754-1.18)	1.19 (0.878-1.45)	1.51 (1.06-1.90)	1.81 (1.21-2.31)
60-min	0.299 (0.257-0.352)	0.371 (0.322-0.440)	0.497 (0.426-0.590)	0.617 (0.525-0.732)	0.814 (0.670-0.966)	0.994 (0.794-1.19)	1.21 (0.934-1.46)	1.47 (1.09-1.80)	1.87 (1.31-2.35)	2.24 (1.49-2.86)
2-hr	0.405 (0.361-0.464)	0.503 (0.447-0.576)	0.641 (0.566-0.733)	0.764 (0.667-0.874)	0.950 (0.808-1.09)	1.12 (0.927-1.30)	1.30 (1.05-1.53)	1.53 (1.20-1.82)	1.92 (1.43-2.37)	2.28 (1.65-2.89)
3-hr	0.484 (0.433-0.545)	0.604 (0.543-0.682)	0.758 (0.676-0.855)	0.884 (0.782-0.995)	1.06 (0.926-1.20)	1.22 (1.04-1.39)	1.39 (1.16-1.60)	1.61 (1.32-1.89)	1.97 (1.56-2.40)	2.31 (1.78-2.92)
6-hr	0.670 (0.602-0.749)	0.837 (0.752-0.939)	1.04 (0.931-1.16)	1.20 (1.07-1.35)	1.42 (1.25-1.60)	1.59 (1.38-1.80)	1.77 (1.50-2.02)	1.97 (1.64-2.28)	2.27 (1.84-2.67)	2.53 (2.00-3.02)
12-hr	0.884 (0.788-0.993)	1.11 (0.991-1.25)	1.40 (1.24-1.57)	1.63 (1.44-1.83)	1.93 (1.68-2.18)	2.16 (1.87-2.47)	2.40 (2.04-2.77)	2.65 (2.21-3.09)	2.98 (2.42-3.54)	3.24 (2.57-3.91)
24-hr	1.16 (1.06-1.27)	1.46 (1.32-1.60)	1.84 (1.67-2.02)	2.15 (1.95-2.36)	2.58 (2.33-2.84)	2.92 (2.62-3.21)	3.27 (2.91-3.61)	3.64 (3.21-4.04)	4.14 (3.60-4.63)	4.54 (3.89-5.12)
2-day	1.39 (1.25-1.55)	1.74 (1.57-1.95)	2.22 (1.99-2.48)	2.60 (2.33-2.91)	3.14 (2.79-3.53)	3.57 (3.15-4.02)	4.02 (3.52-4.54)	4.49 (3.89-5.12)	5.14 (4.38-5.91)	5.66 (4.76-6.57)
3-day	1.52 (1.36-1.71)	1.92 (1.72-2.16)	2.46 (2.20-2.77)	2.90 (2.58-3.26)	3.51 (3.10-3.96)	4.00 (3.51-4.53)	4.52 (3.93-5.14)	5.07 (4.36-5.79)	5.83 (4.93-6.72)	6.45 (5.37-7.50)
4-day	1.66 (1.48-1.87)	2.10 (1.87-2.36)	2.69 (2.40-3.05)	3.19 (2.83-3.60)	3.88 (3.41-4.39)	4.43 (3.87-5.04)	5.02 (4.34-5.73)	5.65 (4.83-6.46)	6.52 (5.48-7.53)	7.23 (5.98-8.43)
7-day	1.93 (1.72-2.17)	2.44 (2.18-2.75)	3.15 (2.80-3.55)	3.72 (3.30-4.19)	4.51 (3.99-5.11)	5.15 (4.51-5.84)	5.81 (5.05-6.62)	6.51 (5.61-7.44)	7.48 (6.35-8.63)	8.26 (6.90-9.61)
10-day	2.12 (1.89-2.38)	2.69 (2.40-3.02)	3.48 (3.09-3.91)	4.10 (3.63-4.61)	4.94 (4.36-5.57)	5.61 (4.91-6.33)	6.29 (5.47-7.12)	7.00 (6.02-7.94)	7.96 (6.77-9.14)	8.71 (7.32-10.1)
20-day	2.59 (2.32-2.88)	3.28 (2.94-3.67)	4.22 (3.79-4.71)	4.94 (4.42-5.51)	5.90 (5.25-6.58)	6.62 (5.85-7.40)	7.36 (6.46-8.27)	8.10 (7.06-9.12)	9.07 (7.82-10.3)	9.80 (8.36-11.2)
30-day	2.91 (2.62-3.23)	3.70 (3.33-4.11)	4.75 (4.27-5.27)	5.54 (4.97-6.15)	6.59 (5.89-7.32)	7.39 (6.56-8.22)	8.19 (7.22-9.16)	8.99 (7.86-10.1)	10.1 (8.69-11.4)	10.8 (9.30-12.4)
45-day	3.42 (3.09-3.79)	4.35 (3.92-4.81)	5.58 (5.03-6.16)	6.48 (5.84-7.16)	7.65 (6.86-8.46)	8.51 (7.60-9.44)	9.34 (8.32-10.4)	10.1 (8.99-11.3)	11.1 (9.79-12.5)	11.9 (10.4-13.4)
60-day	3.92 (3.54-4.34)	4.99 (4.50-5.53)	6.40 (5.77-7.07)	7.39 (6.66-8.16)	8.64 (7.76-9.55)	9.53 (8.53-10.6)	10.4 (9.26-11.5)	11.2 (9.93-12.4)	12.1 (10.7-13.5)	12.7 (11.2-14.3)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

PDS-based depth-duration-frequency (DDF) curves Latitude: 39.1583°, Longitude: -119.7542°

NOAA Atlas 14, Volume 1, Version 5

Created (GMT): Fri Jun 7 17:20:30 2019

Back to Top

Maps & aerials

Small scale terrain

Large scale aerial

Back to Top

US Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service
National Water Center
1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov

Disclaimer

MAP INFORMATION MAP LEGEND The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) Spoil Area 1:24.000. Area of Interest (AOI) Stony Spot Soils Warning: Soil Map may not be valid at this scale. Very Stony Spot 0 Soil Map Unit Polygons Enlargement of maps beyond the scale of mapping can cause Wet Spot Soil Map Unit Lines misunderstanding of the detail of mapping and accuracy of soil Other Δ line placement. The maps do not show the small areas of Soil Map Unit Points contrasting soils that could have been shown at a more detailed Special Line Features **Special Point Features** Water Features Blowout (0) Please rely on the bar scale on each map sheet for map Streams and Canals Borrow Pit 图 measurements. **Transportation** X Clay Spot Source of Map: Natural Resources Conservation Service Rails \leftrightarrow Web Soil Survey URL: Closed Depression 0 Interstate Highways Coordinate System: Web Mercator (EPSG:3857) Gravel Pit **US Routes** Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts **Gravelly Spot** 44 Major Roads distance and area. A projection that preserves area, such as the Landfill 40 Albers equal-area conic projection, should be used if more Local Roads accurate calculations of distance or area are required. Lava Flow Background This product is generated from the USDA-NRCS certified data as Marsh or swamp Aerial Photography of the version date(s) listed below. Mine or Quarry Soil Survey Area: Carson City Area, Nevada Miscellaneous Water Survey Area Data: Version 12, Sep 17, 2018 Perennial Water 0 Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. Rock Outcrop Date(s) aerial images were photographed: Jun 1, 2018—Jun 30. Saline Spot 2018 Sandy Spot The orthophoto or other base map on which the soil lines were Severely Eroded Spot compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor Sinkhole shifting of map unit boundaries may be evident. Slide or Slip Sodic Spot

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
4	Bishop loam, saline	32.6	71.4%
71	Urban land	13.1	28.6%
Totals for Area of Interest		45.7	100.09

Carson City Area, Nevada

4—Bishop loam, saline

Map Unit Setting

National map unit symbol: 2nnnd Elevation: 4,500 to 4,700 feet

Mean annual precipitation: 8 to 12 inches
Mean annual air temperature: 49 to 50 degrees F

Frost-free period: 100 to 110 days

Farmland classification: Not prime farmland

Map Unit Composition

Bishop and similar soils: 95 percent Minor components: 5 percent

Estimates are based on observations, descriptions, and transects of

the mapunit.

Description of Bishop

Setting

Landform: Flood plains
Down-slope shape: Linear
Across-slope shape: Linear

Parent material: Alluvium derived from mixed

Typical profile

H1 - 0 to 28 inches: loam

H2 - 28 to 60 inches: stratified sandy loam to clay loam

Properties and qualities

Slope: 0 to 2 percent

Depth to restrictive feature: More than 80 inches

Natural drainage class: Poorly drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat):

Moderately high (0.20 to 0.57 in/hr)

Depth to water table: About 18 to 24 inches

Frequency of flooding: Occasional Frequency of ponding: None

Calcium carbonate, maximum in profile: 5 percent

Salinity, maximum in profile: Slightly saline to moderately saline

(4.0 to 8.0 mmhos/cm)

Sodium adsorption ratio, maximum in profile: 13.0 Available water storage in profile: High (about 9.8 inches)

Interpretive groups

Land capability classification (irrigated): 4w Land capability classification (nonirrigated): 6w

Hydrologic Soil Group: C/D

Ecological site: WET MEADOW 10-14 P.Z. (R026XY003NV)

Hydric soil rating: No

Minor Components

Voltaire

Percent of map unit: 5 percent Landform: Flood plains Down-slope shape: Linear Across-slope shape: Linear

Ecological site: WET SODIC BOTTOM (R026XY002NV)

Hydric soil rating: Yes

Data Source Information

Soil Survey Area: Carson City Area, Nevada Survey Area Data: Version 12, Sep 17, 2018

Carson City Area, Nevada

71—Urban land

Map Unit Composition

Urban land: 100 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Urban Land

Setting

Landform: Valleys
Down-slope shape: Convex
Across-slope shape: Convex

Data Source Information

Soil Survey Area: Carson City Area, Nevada Survey Area Data: Version 12, Sep 17, 2018

	Worksheet for Alle	eyway	5yr Storm
Project Description			
Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.013	
Channel Slope		0.00500	ft/ft
Left Side Slope		40.00	ft/ft (H:V)
Right Side Slope		40.00	ft/ft (H:V)
Discharge		1.27	ft³/s
Results			
Normal Depth		0.15	ft
Flow Area		0.89	ft²
Wetted Perimeter		11.93	ft
Hydraulic Radius		0.07	ft
Top Width		11.93	ft
Critical Depth		0.14	ft
Critical Slope		0.00592	ft/ft
Velocity		1.43	ft/s
Velocity Head		0.03	ft
Specific Energy		0.18	ft
Froude Number		0.92	
Flow Type	Subcritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	ft/s
Upstream Velocity		Infinity	ft/s
Normal Depth		0.15	ft
Critical Depth		0.14	ft
Channel Slope		0.00500	ft/ft
Critical Slope		0.00592	ft/ft

Project Description Friction Method Manning Formula Solve For Normal Depth Input Data Roughness Coefficient 0.013 Channel Slope 0.00500 ft/ft Left Side Slope 40.00 ft/ft (H-V) Right Side Slope 40.00 ft/ft (H-V) Discharge 40.00 ft/ft (H-V) Discharge 40.00 ft/ft (H-V) Results Very ft/f Results 2.11 ft² Results 2.11 ft² Wetted Perimeter 18.37 ft Hydraulic Radius 0.11 ft Top Width 18.36 ft Critical Depth 0.23 ft Critical Slope 0.00507 ft/ft Velocity 1.91 ft/s Velocity 1.91 ft/s Velocity Head 0.00 ft Specific Energy 0.99 ft Froude Number 0.99 ft <		Worksheet for Alle	yway 1	100yr Storm
Normal Depth Input Data Roughness Coefficient 0.013 Channel Slope 0.005000 fu/ft (H.V) Left Side Slope 40.00 ft/ft (H.V) Right Side Slope 40.00 ft/ft (H.V) Discharge 40.00 ft/ft (H.V) Results Normal Depth 0.23 ft Flow Area 2.11 ft² Wetted Perimeter 18.37 ft Hydraulic Radius 0.11 ft Critical Depth 0.23 ft Critical Slope 0.00507 ft/ft Velocity 1.91 ft/s Velocity Head 0.00507 ft/ft Specific Energy 0.29 ft Froude Number 0.99 ft Frought Data 0.00 ft CVF Input Data 0.00 ft Upstream Depth 0.00 ft Number Of Steps 0.00 ft CVF Output Data 0.00	Project Description			
Roughness Coefficient 0.013 Channel Slope 0.005000 ft/ft (H.V) (Friction Method	Manning Formula		
Roughness Coefficient 0.013 Channel Slope 0.00500 ft/ft Left Side Slope 40.00 ft/ft (H:V) Right Side Slope 40.00 ft/ft (H:V) Discharge 4.03 ft*/s Results Normal Depth 0.23 ft Flow Area 2.11 ft² Wetted Perimeter 18.37 ft Hydraulic Radius 0.11 ft Critical Depth 0.23 ft Critical Slope 0.00507 ft/ft Velocity 1.91 ft/s Velocity Head 0.06 ft Specific Energy 0.29 ft Flow Type Subcritical 0.99 GVF Input Data Bownstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0.0 ft GVF Output Data Upstream Depth 0.0 ft Frofile Description	Solve For			
Channel Slope 0.00500 ft/ft Left Side Slope 40.00 ft/ft (H:V) Right Side Slope 40.00 ft/ft (H:V) Discharge 4.03 ft*/s Results Normal Depth 0.23 ft Flow Area 2.11 ft² Wetted Perimeter 18.37 ft Hydraulic Radius 0.11 ft Top Width 18.36 ft Critical Depth 0.23 ft Critical Slope 0.00507 ft/ft Velocity 1.91 ft/s Velocity Head 0.06 ft Specific Energy 0.29 ft Froude Number 0.99 ft Flow Type Subcritical Subcritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 ft GVF Output Data Upstream Depth 0.00	Input Data			
Left Side Slope	Roughness Coefficient		0.013	
Right Side Slope 40.00 ft/f (H-V) Discharge 4.03 †3/s Results Normal Depth 0.23 ft Flow Area 2.11 ft² Wetted Perimeter 18.37 ft Hydraulic Radius 0.11 ft Critical Depth 0.23 ft Critical Slope 0.00507 tt/ft Velocity 1.91 ft/s Velocity Head 0.06 ft Specific Energy 0.99 ft Froude Number 0.99 ft Frought Data GVF Input Data Ownstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 ft GVF Output Data Upstream Depth 0.00 ft Profile Description ft ft Profile Description ft ft Profile Headloss 0.00 ft Downstream Velocity ft Infinity ft/s </td <td>Channel Slope</td> <td></td> <td>0.00500</td> <td>ft/ft</td>	Channel Slope		0.00500	ft/ft
Discharge	Left Side Slope		40.00	ft/ft (H:V)
Results Normal Depth 0.23 ft Flow Area 2.11 ft² Wetted Perimeter 18.37 ft Hydraulic Radius 0.11 ft Top Width 18.36 ft Critical Depth 0.23 ft Critical Slope 0.00507 ft/ft Velocity 1.91 ft/s Velocity Head 0.06 ft Specific Energy 0.29 ft Froude Number 0.99 Flow Type Subcritical 5 ft GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 ft GVF Output Data Upstream Depth 0.00 ft Profile Description ft Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s	Right Side Slope		40.00	ft/ft (H:V)
Normal Depth	Discharge		4.03	ft³/s
Flow Area 2.11 12 12 13 13 14 14 14 14 15 15 15 15	Results			
Wetted Perimeter 18.37 ft Hydraulic Radius 0.11 ft Top Width 18.36 ft Critical Depth 0.23 ft Critical Slope 0.00507 ft/ft Velocity 1.91 ft/s Velocity Head 0.06 ft Specific Energy 0.29 ft Froude Number 0.99 Flow Type Subcritical Subcritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 ft GVF Output Data Upstream Depth 0.00 ft Profile Description ft ft Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s	Normal Depth		0.23	ft
Hydraulic Radius 0.11 ft Top Width 18.36 ft Critical Depth 0.23 ft Critical Slope 0.00507 ft/ft Velocity 1.91 ft/s Velocity Head 0.06 ft Specific Energy 0.29 ft Froude Number 0.99 Flow Type Subcritical 5 5 GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 ft GVF Output Data Upstream Depth 0.00 ft Profile Description 7 ft Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s	Flow Area		2.11	ft²
Top Width 18.36 ft Critical Depth 0.23 ft Critical Slope 0.00507 ft/ft Velocity 1.91 ft/s Velocity Head 0.06 ft Specific Energy 0.29 ft Froude Number 0.99 Subcritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s	Wetted Perimeter		18.37	ft
Critical Depth 0.0507 ft/ft Critical Slope 0.00507 ft/ft Velocity 1.91 ft/s Velocity Head 0.06 ft Specific Energy 0.29 ft Froude Number 0.99 Temporal Subcritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 ft GVF Output Data Upstream Depth 0.00 ft Profile Description 0.00 ft Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s	Hydraulic Radius		0.11	ft
Critical Slope 0.00507 ft/ft Velocity 1.91 ft/s Velocity Head 0.06 ft Specific Energy 0.29 ft Froude Number 0.99 Flow Type Flow Type Subcritical Subcritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 ft GVF Output Data Upstream Depth 0.00 ft Profile Description 0.00 ft Profile Headloss 0.00 ft/s Downstream Velocity Infinity ft/s	Top Width		18.36	ft
Velocity 1.91 ft/s Velocity Head 0.06 ft Specific Energy 0.29 ft Froude Number 0.99 Flow Type Subcritical CVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 ft CVF Output Data Upstream Depth 0.00 ft Profile Description 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s	Critical Depth		0.23	ft
Velocity Head 0.06 ft Specific Energy 0.29 ft Froude Number 0.99 Flow Type Flow Type Subcritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 Test colspan="2">GVF Output Data Upstream Depth 0.00 ft Profile Description 0.00 ft Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s	Critical Slope		0.00507	ft/ft
Specific Energy 0.29 ft Froude Number 0.99 Flow Type Subcritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 ft GVF Output Data Upstream Depth 0.00 ft Profile Description 0.00 ft Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s	Velocity		1.91	ft/s
Froude Number 0.99 Flow Type Subcritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 ft GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s	Velocity Head		0.06	ft
Flow Type Subcritical GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 ft GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s	Specific Energy		0.29	ft
GVF Input Data Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 ft GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s	Froude Number		0.99	
Downstream Depth 0.00 ft Length 0.00 ft Number Of Steps 0 Ft GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s	Flow Type	Subcritical		
Length 0.00 ft Number Of Steps 0 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s	GVF Input Data			
Number Of Steps 0 GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s	Downstream Depth		0.00	ft
GVF Output Data Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s	Length		0.00	ft
Upstream Depth 0.00 ft Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s	Number Of Steps		0	
Profile Description Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s	GVF Output Data			
Profile Headloss 0.00 ft Downstream Velocity Infinity ft/s Upstream Velocity Infinity ft/s	Upstream Depth		0.00	ft
Downstream Velocity Upstream Velocity Infinity ft/s Infinity ft/s	Profile Description			
Upstream Velocity Infinity ft/s	Profile Headloss		0.00	ft
	Downstream Velocity		Infinity	ft/s
N 15 4	Upstream Velocity		Infinity	ft/s
Normal Depth 0.23 ft	Normal Depth		0.23	ft
Critical Depth 0.23 ft	Critical Depth		0.23	ft
Channel Slope 0.00500 ft/ft	Channel Slope		0.00500	ft/ft
Critical Slope 0.00507 ft/ft	Critical Slope		0.00507	ft/ft

Worksheet for 50 ROW 5yr Storm

Project Description

Friction Method Manning Formula
Solve For Discharge

Input Data

 $\begin{array}{ccc} \text{Channel Slope} & 0.02440 & \text{ft/ft} \\ \text{Normal Depth} & 0.34 & \text{ft} \end{array}$

Section Definitions

Station (ft)	Elevation (ft)	
0+00.00	0	.63
0+01.50		.60
0+06.50	0	.50
0+07.00	0	.50
0+07.08	0	.00
0+08.50	0	.13
0+25.00	0	.46

Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient	
(0+00.00, 0.63)	(0+25.00, 0.46)		0.013

Options

Current Rougnness Weighted Pavlovskii's Method
Open Channel Weighting Method Pavlovskii's Method
Closed Channel Weighting Method Pavlovskii's Method

Results

Discharge		6.87	ft³/s
Elevation Range	0.00 to 0.63 ft		
Flow Area		1.54	ft²
Wetted Perimeter		12.36	ft
Hydraulic Radius		0.12	ft
Top Width		12.06	ft

	Worksheet for	50 ROW	5yr Storm	
Results				
Normal Depth		0.34	ft	
Critical Depth		0.43	ft	
Critical Slope		0.00455	ft/ft	
Velocity		4.46	ft/s	
Velocity Head		0.31	ft	
Specific Energy		0.65	ft	
Froude Number		2.20		
Flow Type	Supercritical			
GVF Input Data				
Downstream Depth		0.00	ft	
Length		0.00	ft	
Number Of Steps		0		
GVF Output Data				
Upstream Depth		0.00	ft	
Profile Description				
Profile Headloss		0.00	ft	
Downstream Velocity		Infinity	ft/s	
Upstream Velocity		Infinity	ft/s	
Normal Depth		0.34	ft	
Critical Depth		0.43	ft	
Channel Slope		0.02440	ft/ft	
Critical Slope		0.00455	ft/ft	

Worksheet for 50 ROW 100yr Storm

Project Description

Friction Method Manning Formula
Solve For Discharge

Input Data

 $\begin{array}{c} \text{Channel Slope} & 0.02440 & \text{ft/ft} \\ \text{Normal Depth} & 0.63 & \text{ft} \end{array}$

Section Definitions

Station (ft)	Elevation (ft)
0+00.00	0.63
0+01.50	0.60
0+06.50	0.50
0+07.00	0.50
0+07.08	0.00
0+08.50	0.13
0+25.00	0.46
0+41.50	0.13
0+42.92	0.00
0+43.00	0.50
0+43.50	0.50
0+48.50	0.60
0+50.00	0.63

Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient
(0+00.00, 0.63)	(0+50.00, 0.63	3) 0.013

Options

Current Rougnness weighted Method
Open Channel Weighting Method
Closed Channel Weighting Method
Pavlovskii's Method
Pavlovskii's Method

	Worksheet for 50 R	ROW 1	00yr Storm
Results			
Discharge		102.50	ft³/s
Elevation Range	0.00 to 0.63 ft		
Flow Area		13.74	ft²
Wetted Perimeter		50.87	ft
Hydraulic Radius		0.27	ft
Top Width		50.00	ft
Normal Depth		0.63	ft
Critical Depth		0.86	ft
Critical Slope		0.00320	ft/ft
Velocity		7.46	ft/s
Velocity Head		0.86	ft
Specific Energy		1.49	ft
Froude Number		2.51	
Flow Type	Supercritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	ft/s
Upstream Velocity		Infinity	ft/s
Normal Depth		0.63	ft
Critical Depth		0.86	ft
Channel Slope		0.02440	ft/ft
Critical Slope		0.00320	ft/ft

Worksheet for 60 ROW 5yr Storm

Project Description

Friction Method Manning Formula Solve For Discharge

Input Data

0.00500 Channel Slope ft/ft 0.45 ft Normal Depth

Section Definitions

Station (ft)		Elevation (ft)	
	0+00.00		0.62
	0+01.00		0.60
	0+06.00		0.50
	0+06.50		0.50
	0+06.58		0.00
	0+08.00		0.13
	0+30.00		0.57

Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient	
(0+00.00, 0.62)	(0+30.00, 0.57)		0.013

Options

Current Roughness weighted Pavlovskii's Method Method Pavlovskii's Method Open Channel Weighting Method Pavlovskii's Method Closed Channel Weighting Method

Results

	7.87	ft³/s
0.00 to 0.62 ft		
	3.12	ft²
	17.88	ft
	0.17	ft
	17.49	ft
		3.12 17.88 0.17

	Worksheet for	60 ROW	5yr Storm	
Results				
Normal Depth		0.45	ft	
Critical Depth		0.45	ft	
Critical Slope		0.00447	ft/ft	
/elocity		2.52	ft/s	
/elocity Head		0.10	ft	
Specific Energy		0.54	ft	
Froude Number		1.05		
Flow Type	Supercritical			
GVF Input Data				
Downstream Depth		0.00	ft	
ength		0.00	ft	
Number Of Steps		0		
GVF Output Data				
Jpstream Depth		0.00	ft	
Profile Description				
Profile Headloss		0.00	ft	
Downstream Velocity		Infinity	ft/s	
Jpstream Velocity		Infinity	ft/s	
Normal Depth		0.45	ft	
Critical Depth		0.45	ft	
Channel Slope		0.00500	ft/ft	
Critical Slope		0.00447	ft/ft	

Worksheet for 60 ROW 100yr Storm

Project Description

Friction Method Manning Formula
Solve For Discharge

Input Data

 $\begin{array}{c} \text{Channel Slope} & 0.00500 & \text{ft/ft} \\ \text{Normal Depth} & 0.62 & \text{ft} \end{array}$

Section Definitions

Station (ft)	Elevation (ft)
0+00.00	0.62
0+01.00	0.60
0+06.00	0.50
0+06.50	0.50
0+06.58	0.00
0+08.00	0.13
0+30.00	0.57
0+52.00	0.12
0+53.42	0.00
0+53.50	0.50
0+54.00	0.50
0+59.00	0.60
0+60.00	0.62

Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient
(0+00.00, 0.62)	(0+60.00, 0.62)	0.013

Options

Current Rougnness weighted Method
Open Channel Weighting Method
Closed Channel Weighting Method
Pavlovskii's Method
Pavlovskii's Method

	Worksheet for 60 I	ROW 1	00yr Storm
Results			
Discharge		45.58	ft³/s
Elevation Range	0.00 to 0.62 ft		
Flow Area		14.61	ft²
Wetted Perimeter		60.87	ft
Hydraulic Radius		0.24	ft
Top Width		60.00	ft
Normal Depth		0.62	ft
Critical Depth		0.64	ft
Critical Slope		0.00393	ft/ft
Velocity		3.12	ft/s
Velocity Head		0.15	ft
Specific Energy		0.77	ft
Froude Number		1.12	
Flow Type	Supercritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	ft
Profile Description			
Profile Headloss		0.00	ft
Downstream Velocity		Infinity	ft/s
Upstream Velocity		Infinity	ft/s
Normal Depth		0.62	ft
Critical Depth		0.64	ft
Channel Slope		0.00500	ft/ft
Critical Slope		0.00393	ft/ft

Worksheet for 66 ROW 5yr Storm

Project Description

Friction Method Manning Formula
Solve For Discharge

Input Data

 $\begin{array}{c} \text{Channel Slope} & 0.00500 & \text{ft/ft} \\ \text{Normal Depth} & 0.45 & \text{ft} \end{array}$

Section Definitions

Station (ft)		Elevation (ft)	
	0+00.00		0.65
	0+00.50		0.64
	0+07.50		0.50
	0+08.00		0.50
	0+08.08		0.00
	0+09.50		0.13
	0+34.50		0.63

Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient	
(0+00.00, 0.65)	(0+34.50, 0.63)		0.013

Options

Current Rougnness Weighted Method
Open Channel Weighting Method
Closed Channel Weighting Method
Pavlovskii's Method
Pavlovskii's Method

Results

Discharge		7.81	ft³/s
Elevation Range	0.00 to 0.65 ft		
Flow Area		3.09	ft²
Wetted Perimeter		17.72	ft
Hydraulic Radius		0.17	ft
Top Width		17.33	ft

	Worksheet for	66 ROW	5yr Storm	
Results				
Normal Depth		0.45	ft	
Critical Depth		0.45	ft	
Critical Slope		0.00447	ft/ft	
Velocity		2.52	ft/s	
Velocity Head		0.10	ft	
Specific Energy		0.54	ft	
Froude Number		1.05		
Flow Type	Supercritical			
GVF Input Data				
Downstream Depth		0.00	ft	
Length		0.00	ft	
Number Of Steps		0		
GVF Output Data				
Upstream Depth		0.00	ft	
Profile Description				
Profile Headloss		0.00	ft	
Downstream Velocity		Infinity	ft/s	
Upstream Velocity		Infinity	ft/s	
Normal Depth		0.45	ft	
Critical Depth		0.45	ft	
Channel Slope		0.00500	ft/ft	
Critical Slope		0.00447	ft/ft	

Worksheet for 66 ROW 100yr Storm

Project Description

Friction Method Manning Formula
Solve For Discharge

Input Data

 $\begin{array}{c} \text{Channel Slope} & 0.00500 & \text{ft/ft} \\ \text{Normal Depth} & 0.51 & \text{ft} \end{array}$

Section Definitions

Station (ft)		Elevation (ft)	
	0.00.00		0.05
	0+00.00		0.65
	0+00.50		0.64
	0+07.50		0.50
	0+08.00		0.50
	0+08.08		0.00
	0+09.50		0.13
	0+34.50		0.63

Roughness Segment Definitions

Start Station	Ending Station	Roughness Coefficient	
(0+00.00, 0.65)	(0+34.50, 0.63)		0.013

Options

Current Rougnness Weighted Pavlovskii's Method
Open Channel Weighting Method Pavlovskii's Method
Closed Channel Weighting Method Pavlovskii's Method

Results

Discharge		11.86	ft³/s
Elevation Range	0.00 to 0.65 ft		
Flow Area		4.33	ft²
Wetted Perimeter		22.00	ft
Hydraulic Radius		0.20	ft
Top Width		21.56	ft

Worksheet for 66 ROW 100yr Storm				
Results				
Normal Depth		0.51	ft	
Critical Depth		0.52	ft	
Critical Slope		0.00430	ft/ft	
Velocity		2.74	ft/s	
Velocity Head		0.12	ft	
Specific Energy		0.63	ft	
Froude Number		1.08		
Flow Type	Supercritical			
GVF Input Data				
Downstream Depth		0.00	ft	
Length		0.00	ft	
Number Of Steps		0		
GVF Output Data				
Upstream Depth		0.00	ft	
Profile Description				
Profile Headloss		0.00	ft	
Downstream Velocity		Infinity	ft/s	
Upstream Velocity		Infinity	ft/s	
Normal Depth		0.51	ft	
Critical Depth		0.52	ft	
Channel Slope		0.00500	ft/ft	
Critical Slope		0.00430	ft/ft	

RATIONAL FORMULA METHOD RUNOFF COEFFICIENTS

		Runoff Coefficients		
Land Use or Surface	Aver. % Impervious	5-Year	100-Year	
Characteristics	Area	(C_g)	(C_{100})	
Business/Commercial:				
Downtown Areas	85	.82	.85	
Neighborhood Areas	70	.65	.80	
Residential:				
(Average Lot Size)				
1/8 Acre or Less (Multi-Unit)	65	.60	.78	
¹ / ₄ Acre	38	.50	.65	
½ Acre	30	.45	.60	
½ Acre	25	.40	.55	
1 Acre	20	.35	.50	
Industrial:	72	.68	.82	
Open Space:				
(Lawns, Parks, Golf Courses)	5	.05	.30	
Undeveloped Areas:				
Range	0	.20	.50	
Forest	0	.05	.30	
Streets/Roads:				
Paved	100	.88	.93	
Gravel	20	.25	.50	
Drives/Walks:	95	.87	.90	
Roof:	90	.85	.87	
Notes:				

1. Composite runoff coefficients shown for Residential, Industrial, and Business/Commercial Areas assume irrigated grass landscaping for all pervious areas. For development with landscaping other than irrigated grass, the designer must develop project specific composite runoff coefficients from the surface characteristics presented in this table.

VERSION: April 30, 2009	REFERENCE:	TABLE
	USDCM, DROCOG, 1969	701
WRC ENGINEERING, INC.	(with modifications)	

RUNOFF CURVE NUMBERS FOR URBAN AREAS ¹ Runoff Curve Numbers					
Cover Type and Hydrologic Condition	Aver. % Impervious Area ²	Soil Comp A	Soil Comp B	Soil Comp C	Soil Comp D
Fully developed urban area (vegetation established) Open space (lawns, parks, golf courses, cemeteries, etc.) ³					
Poor condition (grass cover < 50%)		68	79	86	89
Fair condition (grass cover 50 to 75%)		49	69	79	84
Good condition (grass cover > 75%)		39	61	74	80
Impervious areas:					
Paved parking lots, roofs, driveways, etc.		98	98	98	98
(excluding right-of-way)					
Streets and roads:					
Paved; curbs and storm sewers (excluding right-of-		98	98	98	98
way)					
Paved; open ditches (including right-of-way)		83	89	92	93
Gravel (including right-of-way)		76	85	89	91
Dirt (including right-of-way)		72	82	87	89
Western desert urban areas:					
Natural desert landscaping (pervious areas only) ⁴		63	77	85	88
Artificial desert landscaping (impervious weed		96	96	96	96
barrier, desert shrub with 1- to 2-inch sand or gravel					
mulch and basin borders)					
Urban districts:					
Commercial and business	85	89	92	94	95
Industrial	72	81	88	91	93
Residential districts by average lot size:					
1/8 acre or less (town houses)	65	77	85	90	92
1/4 acre	38	61	75	83	87
1/3 acre	30	57	72	81	86
1/2 acre	25	54	70	80	85
1 acre	20	51	68	79	84
2 acres	12	46	65	77	82
Developing urban areas Newly graded areas (pervious only, no vegetation) ⁵ Idle lands (CNs are determined using cover types similar to those Table 702 - 3 of 4)		77	86	91	94

¹Average runoff condition, and $I_a = 0.2S$

⁵Composite CNs to use for the design of temporary measures during grading and construction should be computed using figure 2-3 or 2-4 in TR-55 (SCS, 1986) based on the degree of development (impervious area percentage) and the CNs for the newly graded pervious areas.

VERSION: April 30, 2009	REFERENCE: 210-VI-TR-55, Second Edition, June 1986	TABLE 702
WRC ENGINEERING, INC.		1 of 4

²The average percent impervious area shown was used to develop the composite CNs. Other assumptions are as follows: impervious areas are directly connected to the drainage system, impervious areas have a CN of 98, and pervious areas are considered equivalent to open space in good hydrologic condition. CNs for other combinations of conditions may be computed using figure 2-3 or 2-4 in TR-55 (SCS, 1986).

³CNs shown are equivalent to those of pasture. Composite CNs may be computed for other combinations of open space cover type.

⁴Composite CNs for natural desert landscaping should be computed using figure 2-3 or 2-4 in TR-55 (SCS, 1986) based on the impervious area percentage (CN = 98) and the pervious area CN. The pervious area CNs are assumed equivalent to desert shrub in poor hydrologic condition.

RUNOFF CURVE NUMBERS FOR CULTIVATED AGRICULTURAL LANDS¹

Runoff Curve Numbers Hydrologic Soil Comp Soil Comp Soil Comp Soil Comp Treatment² condition³ Cover type A В D Fallow Bare soil Poor Crop residue cover (CR) Good Row crops Straight row (SR) Poor Good SR + CRPoor Good Contoured (C) Poor Good C + CRPoor Good Contoured & terraced (C&T) Poor Good C&T + CRPoor Good SR Small grain Poor Good SR + CRPoor Good C Poor Good C + CRPoor Good C&T Poor Good C&T + CRPoor Good Close-seeded or SR Poor broadcast legumes Good or rotation meadow C Poor Good C&T Poor Good

Poor: Factors impair infiltration and tend to increase runoff.

Good: Factors encourage average and better than average infiltration and tend to decrease runoff.

VERSION: April 30, 2009	REFERENCE:	TABLE
WRC ENGINEERING, INC.	210-VI-TR-55, Second Edition, June 1986	702 2 of 4

¹Average runoff condition, and $I_a = 0.2S$

²Crop residue cover applies only if residue is on at least 5% of the surface throughout the year.

 $^{^3}$ Hydrologic condition is based on combination of factors that affect infiltration and runoff, including: (a) density and canopy of vegetative areas, (b) amount of year-round cover, (c) amount of grass or close-seeded legumes in rotations, (d) percent of residue cover on the land surface (good $\geq 20\%$), and (e) degree of surface roughness.

RUNOFF CURVE NUMBERS FOR OTHER AGRICULTURAL LANDS¹

	Runoff Curve Numbers				
Cover Type	Hydrologic Condition	Soil Comp A	Soil Comp B	Soil Comp C	Soil Comp D
Dark 5	Poor	68	79	86	89
Pasture, grassland, or range – continuous forage for grazing ²	Fair	49	69	79	84
	Good	39	61	74	80
Meadow – continuous grass, protected from grazing and generally mowed for hay	-	30	58	71	78
Brush – brush-weed-grass mixture with brush the major	Poor	48	67	77	83
element ³	Fair	35	56	70	77
	Good	30 ⁴	48	65	73
Woods – grass combination (orchard or tree farm) ⁵	Poor	57	73	82	86
	Fair	43	65	76	82
	Good	32	58	72	79
$Woods^6$	Poor	45	66	77	83
	Fair	36	60	73	79
	Good	30 ⁴	55	70	77
Farmsteads – buildings, lanes, driveways, and surrounding lots	-	59	74	82	86

¹Average runoff condition, and $I_a = 0.2S$

Good: > 75% ground cover and lightly or only occasionally grazed

³*Poor*: < 50% ground cover *Fair*: 50 to 75% ground cover *Good*: >75% ground cover

Fair: Woods are grazed but not burned, and some forest litter covers the soil.

Good: Woods are protected from grazing, and litter and brush adequately cover the soil.

VERSION: April 30, 2009	REFERENCE:	TABLE
WRC ENGINEERING, INC.	210-VI-TR-55, Second Edition, June 1986	702 3 of 4

 $^{^2}Poor$: < 50% ground cover or heavily grazed with no mulch *Fair*: 50 to 75% ground cover and not heavily grazed

⁴Actual curve number is less than 30; use CN = 30 for runoff computations.

⁵CNs shown were computed for areas with 50% woods and 50% grass (pasture) cover. Other combinations of conditions may be computed from the CNs for woods and pasture.

⁶Poor: Forest litter, small trees, and brush are destroyed by heavy grazing or regular burning.

RUNOFF CURVE NUMBERS FOR ARID AND SEMIARID RANGELANDS¹

Runoff Curve Numbers

	Kunon Curve numbers				
Cover Description	Hydrologic Condition ²	Soil Comp A ³	Soil Comp B	Soil Comp C	Soil Comp D
Herbaceous – mixture of grass, weeds, and low-	Poor		80	87	93
growing brush, with brush the minor element.	Fair		71	81	89
	Good		62	74	85
Oak-aspen – mountain brush mixture of oak brush,	Poor		66	74	79
aspen, mountain mahogany, bitter brush, maple, and other brush	Fair		48	57	63
	Good		30	41	48
Pinyon-juniper – pinyon, juniper, or both; grass	Poor		75	85	89
understory	Fair		58	73	80
	Good		41	61	71
Sagebrush with grass understory	Poor		67	80	85
	Fair		51	63	70
	Good		35	47	55
Desert shrub – major plants include saltbrush,	Poor	63	77	85	88
greasewood, creosotebush, blackbrush, bursage, palo verde, mesquite, and cactus	Fair	55	72	81	86
	Good	49	68	79	84

 $^{^{1}}$ Average runoff condition, and I_{a} = 0.2S. For range in humid regions, use Table 702 - 3 of 4.

Fair: 30 to 70% ground cover Good: > 70% ground cover

²*Poor*: < 30% ground cover (litter, grass, and brush overstory)

³Curve numbers for group A have been developed only for desert shrub.

GEOTECHNICAL INVESTIGATION REPORT

TENTATIVE MAP LEVEL LITTLE LANE PROJECT CARSON CITY, NEVADA

APRIL 12, 2019

Prepared For:

Mr. Fred Bates Bates Homes 9460 Double R Blvd., Suite 103 Reno, NV 89521

Prepared By:

Resource Concepts, Inc. 340 N. Minnesota Street Carson City, Nevada 89703

April 12, 2019

Mr. Fred Bates **Bates Homes** 9460 Double R Blvd., Suite 103 Reno, NV 89521

Subject: Little Lane Project

Carson City, Nevada **Tentative Map Level**

Geotechnical Investigation Report

Dear Mr. Bates:

In accordance with your request, we are submitting our Tentative Map Level Geotechnical Report for Little Lane Project, Carson City, Nevada. The Little Lane Project, as proposed, consists of approximately 151 single family lots and related infrastructure. This investigation addresses general site and regional geology, groundwater depths, geologic hazards and generalized mass grading recommendations in support of the tentative map submittal. Subsequent geotechnical investigation(s) will be required to address the roadway pavement section designs, residential foundation design parameters, retaining walls, flatwork and erosion control requirements.

In our opinion, we have not identified any significant geotechnical constraints which would preclude the proposed construction provided that site specific geotechnical field investigations are conducted as described above. The two most significant findings that will require mitigations are the presence of shallow groundwater and lean clay soils. Mitigations will include wet trench construction techniques for utilities and separation of clay soils from foundations slabs on grade and pavements. This may be accomplished by overexcavation and replacement of the offensive soils with structural fill, raising the site by fill placement or a combination thereof.

We appreciate the opportunity to work with you on this project. Should you have questions concerning the contents of this report, or if RCI may be of further service, please contact the undersigned at your convenience.

Respectfully submitted, RESOURCE CONCEPTS, INC.

Gary Luce, P.E.

No. 12001 Senior Geotechnical Engineer 4-12-2019 Jim Koch, CEM Senior Geologist

Engineering • Surveying • Water Rights Resources & Environmental Services

TABLE OF CONTENTS

1.0	INTRODUCTION	1
2. 0	SCOPE OF SERVICES	1
3. 0	SITE AND PROJECT DESCRIPTION	1
4.0	REGIONAL GEOLOGY	2
5.0	SOIL AND GROUNDWATER CONDITIONS	2
	5.1 General	
	5.2 Soil Conditions	
	5.3 Groundwater	
6.0	GEOLOGIC HAZARDS	3
	6.1 Active Faulting	3
	6.2 Liquefaction	
	6.3 Landslides and Slope Stability	
	6.4 Expansive Soil	
7.0	CONCLUSIONS AND RECOMMENDATIONS	4
,.0	7.1 General	
	7.2 Seismic Design Criteria	
	7.4 Grading – General, Site Preparation	
	7.5 Grading – Building Pads	
	7.6 Grading – Underground Utilities	
	7.7 Grading – Pavement and Flatwork Areas	
	7.8 Pavements	
	7.9 Site Drainage and Erosion Control	
8.0	CLOSURE	7
	8.1 Limitations	
0.0	REFERENCES	
フ.U	NET ENERVES	ソ

MAPS AND ILLUSTRATIONS

Figure 1, Vicinity Map

Figure 2, Site Plan

Figure 3, Geologic Map

Figure 4, Fault Map

Figure 5, Soils Map

APPENDIX A: Field Investigation
APPENDIX B: Laboratory Test Results

GEOTECHNICAL SITE REVIEW

1.0 INTRODUCTION

This report presents the results of our limited geotechnical site review for the Little Lane Project, a residential subdivision development to be located in Carson City, Nevada as shown on Figure 1, the Vicinity Map. The primary focus of the review was to evaluate the general subsurface geologic and soil conditions in order to provide mass grading recommendations for roadways and related improvements in support of the Tentative Map submittal to Carson City.

The recommendations presented herein are based on a single site reconnaissance visit, the excavation of six exploratory test pits, the analyses of published and unpublished maps, geotechnical reports and our experience with similar soil and geologic conditions encountered during construction of projects in the vicinity of the site. At the time of our field investigation only a conceptual site plan was available. Grading plans and structural details were not available and therefore the report is not intended to take the place of a site-specific geotechnical investigation.

2.0 SCOPE OF SERVICES

Our scope of services for our geotechnical investigation for the subject project included:

A single site visit to determine existing conditions on the site and to mark exploration locations for utility clearances for our proposed test pits.

Review of published geologic maps, aerial photographs, in-house documents, and other literature pertaining to the site to aid in evaluating geologic conditions and hazards that may be present. The published or web documents reviewed consisted of the following:

- Bell and Trexler, 1979 Carson City Quadrangle Earthquake Hazards Map, Nevada Bureau of Mines and Geology, Scale 1:24,000.
- Trexler, 1977, Carson City Quadrangle Geologic Map, Nevada Bureau of Mines and Geology, Scale 1:24,000.
- Katzer, T. 1980, Carson City Quadrangle, General Groundwater Map, Nevada Bureau of Mines and Geology, Scale 1:24,000.
- Natural Resources Conservation Service Website, Soil Survey of Carson City Area, Nevada, (http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm).
- Manhard Consulting, Division of Deed Document, Anderson Family Associates, May 2016.

Based on the above described activities, we have prepared this report which presents our findings, conclusions and recommendations for site planning, site design and mass grading of the proposed residential project.

3.0 SITE AND PROJECT DESCRIPTION

The Little Lane Project consists of approximately 21.3 acres of vacant land located in Carson City, Nevada. Access to the "Site" is to be provided on the south by Little Lane and on the north by the extension of Parkland Avenue south to Little Lane. The conceptual lot and roadway layouts are shown on Figure 2, the Site Plan.

Topography around the project can be described as consisting of gentle to moderate slopes to the east. Elevations in the area of the proposed project site range from approximately 4,655 feet to 4,643 feet. Maximum cut and fill depths are anticipated to be on the order of three feet. Due to the low

lying nature of the site, it is anticipated that most of the project area will be raised from one to three feet to facilitate drainage improvements.

Mature sage brush and other low shrubs cover the undisturbed portions of the project area. Disturbed areas of the site are along the existing roadways, where dirt recreational vehicle "trials" cross the site and where construction of adjacent developments lapped onto the site. The site is bounded on the north and west by subdivision developments. Little Lane bounds the south side of the site. Multifamily housing bounds the east side of the site along Saliman Road. A communications tower is located at the northeast corner of the site.

4.0 REGIONAL GEOLOGY

The project site is located at the western edge of the Basin and Range geomorphic province. The Basin and Range is characterized by north-south trending mountain ranges separated by broad valleys. The valleys are down dropped relative to the mountains along boundary normal faults. The Sierra Nevada geomorphic province begins a few miles west of the site. The Sierra Nevada Mountains in this area are locally referred to as the Carson Range. The Carson Range consists of granitic rocks that intruded older Mesozoic (60 to 225 million years ago) to Paleozoic (225 million to 600 million years ago) sedimentary and volcanic rocks.

The Eagle Valley area, in which the site is located, consists of deep sediments that represent alluvial outwash from the Sierra Nevada Mountains on the west and from the Pine Nut Mountains to the east.

Faulting that resulted in the development of the Basin and Range topography occurred during the Tertiary period (last 30 million years). Regional faulting activity continues to the present day as evidenced by seismic activity which includes large earthquakes from time to time. The regional geology in the area of the site is presented on the Geologic Map, Figure 3.

5.0 SOIL AND GROUNDWATER CONDITIONS

5.1 General

The soil conditions are depicted by the Natural Resources Conservation Service (NRCS) Web soil survey site. The following soil descriptions include the USCS symbol where applicable.

5.2 Soil Conditions

Mapping by the NRCS shows the project area to be mapped as consisting of a single soil map unit: Heybourne Loam (CL). The lean clay soils found on the site are interpreted to represent sheet flow deposits from runoff events emanating from Kings Canyon. Exploration on the site identified a range from lean clays to clayey sands with lessor amounts of silty sands. The Soil Map for the area of the project is included as Figure 5.

5.3 Groundwater

Groundwater is relatively shallow on the site ranging from approximately three to eight feet below the existing surface. The depth to groundwater was found to be shallowest on the west side of the site. Groundwater in the vicinity of the site is anticipated to flow eastward towards the Linear Ditch and the Carson River.

Fluctuations in the level of groundwater may occur due to variations in rainfall, temperature, and climatic factors.

6.0 GEOLOGIC HAZARDS

6.1 Active Faulting

The northern part of Carson City is located near active faults which are considered capable of producing significant ground motions due to seismic events. Holocene-age (less than 15,000 years, locally less than several hundred years) faults have been mapped in the general vicinity of the project site based on the Carson City Quadrangle Earthquake Hazards Map (Nevada Bureau of Mines and Geology.

No faults have been mapped across the Little Lane Project site nor was any evidence of faulting observed in the field. The risk of fault ground rupture at the site is considered low. The locations of active faults relative to the Little Lane Project site are shown on the Fault Map, Figure 4.

Ground shaking intensities for design considerations should be governed by seismic events occurring on the main branch of the Genoa Fault and on the Carson City Fault which follow the base of the Carson Range. Faulting along the Carson Range has been evaluated by the Nevada Bureau of Mines and Geology to be capable of producing earthquakes of 7.0 or greater Richter Magnitude with peak ground accelerations as high as 1.5g. These values are equivalent to Modified Mercalli Intensities of X or greater.

The seismic risk due to shaking at the site is not considered significantly greater than that of the surrounding developments and the Carson City area in general. Strong seismic shaking should be anticipated during the life of the structures.

6.2 Liquefaction

Liquefaction of granular soils can be caused by strong vibratory motion due to earthquakes. Soils that are highly susceptible to liquefaction are loose, granular and saturated. Liquefaction of soils may cause surface distress, loss of bearing capacity, and settlement of structures. Liquefaction generally is restricted to within 50 feet of the surface due to confining pressures. Permanent groundwater is estimated to be from three to ten feet or shallower below the surface (excluding seasonally perched layers if any). In the vicinity of the project site, native surface cohesive soils are likely to be stiff based on our experience and explorations. Soil layers underlying the surface soils are likely to be loose to medium dense sandy soils found in lenses and isolated channel deposits. These soils are likely to be susceptible to liquefaction.

6.3 Landslides and Slope Stability

The Little Lane Project development area has only very gentle slopes. No landslides were observed in the field or on adjacent areas that may affect the site. We do not consider the potential for land sliding to be a hazard to the project provided that the appropriate site specific grading recommendations are developed.

6.4 Expansive Soil

Moderately expansive soils were identified on the site based on our exploration and the NRCS mapping. This conclusion is consistent with our work experience in this area of Carson City. Where fine-grained surficial soils are present, there is a low to moderate potential for frost heaving of pavements and flatwork if built on or near existing grades.

Some overexcavation may be necessary to mitigate the potential for soil expansion/consolidation or for protection from frost heaving. In addition, positive drainage away from pavements and flatwork is essential to mitigating soil expansion, consolidation or frost heaving.

7.0 CONCLUSIONS AND RECOMMENDATIONS

7.1 General

Our conclusions and recommendations are based on our limited investigation conducted in April of 2019 and on review of our previous work on and near the site. Based on the results of our investigation, the site appears to be geotechnically suited for the proposed residential uses. Our observations and conclusions should be verified and supplemented by a site specific geotechnical investigation.

- 7.1.1 Our investigation indicates that the site soil is characterized by lean clay on the surface underlain by granular soils consisting of silty sand and poorly graded sand, to at least ten feet below the ground surface.
- 7.1.2 No faults are mapped across the project site nor was any evidence of active faulting observed in the field. Therefore, fault induced ground rupture is not considered to be a hazard at the project site.
- 7.1.3 Potential seismic hazards at the site will likely be associated with possible moderate to strong ground shaking from an event along the regional active faults. Structures should be designed in accordance with 2012/2015 IBC Seismic requirements. Strong seismic shaking should be anticipated during the life of the project.
- 7.1.4 The potential for liquefaction of soils underlying the site are estimated to be moderate. Due the low-lying nature of the site liquefaction induced settlements are likely to be broad and relatively uniform in nature. Mitigation for liquefaction of flat lying sites is uncommon except for those with severe liquefaction potential or where large lateral movements are possible.

7.2 Seismic Design Criteria

The site is located near faults capable of generating strong seismic shaking during the life of the project. The site should be considered Site Class D or "Stiff Soil" as defined by the 2012/2015 IBC.

The following design values are the current criteria for structural design on the site. These values should be confirmed at the time of site design activities.

TABLE 7.2
IBC/IRC SEISMIC DESIGN PARAMETERS

Parameter	Factors	IBC Reference
Site Class	D	Table 20.3-1 (2010 ASCE-7)
Spectral Acceleration	S _s = 2.322	Figure 1613.3.1(1)
	S ₁ = 0.824	Figure 1613.3.1(2)
Seismic Coefficient, Fa	F _a = 1.0	Table 1613.3.3(1)
Seismic Coefficient, F _v	F _v = 1.5	Table 1613.3.3(2)
Adjusted Spectral Response	S _{MS} = 2.322	Equation 16-37
S _{MS} , S _{MI}	S _{MI} = 1.236	Equation 16-38
Design Spectral Acceleration	S _{DS} = 1.548	Equation 16-39
S _{DS} , S _{D1}	S _{D1} = 0.824	Equation 16-40

7.3 Preliminary Mass Grading Soil Handling and Excavation Characteristics

- 7.3.1 Based on the results of our investigation, the site is geotechnically well suited for the proposed construction and related infrastructure provided the recommendations presented herein are implemented in the design and construction of the project.
- 7.3.2 In our opinion, grading and excavations may be accomplished with light to moderate effort with conventional heavy-duty grading/excavation equipment. Excavations (greater than two to three feet) in native soils are anticipated to experience wet to saturated soils that will likely yield under conventional excavation and compaction equipment.
- 7.3.3 Excavated native clay soils (SC, CL) will not be suitable for use as backfill of utilities nor for the direct support of foundations, slabs on grade or pavements. Importation of structural fill and backfill should be planned for.
- 7.3.4 Where structural fill material is required, it should meet the Standard Specifications for Public Works specifications (304.03). Structural fill is defined herein as all fill within five feet laterally of foundations or below the top of footing. In addition, all fill placed beneath pavement sections should also be considered structural. Import structural fill material where required should be sampled and approved by RCI prior to its transportation to the site.
- 7.3.5 Temporary excavations, such as utility trench sidewalls excavated within undisturbed native soils or structural fill should remain near-vertical to depths of at least three feet. Some minor sloughing should be expected within some of the cleaner surficial sand lenses or during periods of high precipitation. Native soils within five feet of the existing surface should be considered Type C by OSHA Standards. OSHA site class should be determined in deeper cut areas as part of the site specific geotechnical investigation.
- 7.3.6 Shallow groundwater is present throughout the project area. Wet trench conditions should be planned for during utility installations. Potholing of the site prior to bidding and commencement of construction is strongly recommended.
- 7.3.7 For preliminary design soil slopes should be limited to 2H:1V or flatter. Native soils are subject to erosion from concentrated flows. Appropriate erosion protection should be provided in areas subject to concentrated flows at or above four feet per second.

7.4 Grading – General, Site Preparation

- 7.4.1 A preconstruction conference should be held at the site prior to the beginning of grading operations with the owner, contractor, civil engineer and geotechnical engineer in attendance. Soil handling and grading requirements can be discussed at that time.
- 7.4.2 Earthwork operations should be observed, and compacted fill tested by a qualified representative of the Engineer.
- 7.4.3 All references to relative compaction and optimum moisture content in this report are based on the ASTM D1557-02 Test Procedure.
- 7.4.4 Site preparation should begin with the removal of brush, organic matter and debris if any. The depth of removal should be such that material exposed in the cut areas or soils to be used as fill is relatively free of organic matter. This will likely result in removal depths ranging from approximately 2 to 4 inches, depending on location. Material generated during stripping is not suitable for use in structural areas but may be placed in landscaped or other non-structural areas if deemed suitable for the specific application.
- 7.4.5 During or immediately following wet weather such as the spring snow melt period or after heavy rains, the near-surface soil is likely to deflect or pump under construction equipment loads. Yielding soil conditions can typically be stabilized using one of the methods listed

below. However, soil conditions and mitigation methods should be reviewed and approved by RCI when encountered.

- Option 1: Deeply scarify (10 to 12 inches) allow to air dry to near optimum moisture content and re-compact.
- Option 2: Remove unstable (wet) soils to a firm base and allow the wet subgrade soil to dry to near optimum moisture content and re-compact. Replace the removed soils with drier soil meeting the structural fill specifications.
- Other stabilization alternatives may be appropriate depending on the situation. Consultation with us is crucial for expedient and appropriate mitigation.

7.5 Grading – Building Pads

The following discussion and recommendations are intended for mass grading of structural and non-structural areas only. Due to the lack of an approved grading plan at the time of this report these recommendations are subject to review prior to final plan submittal to Carson City. Additional site specific geotechnical investigation will be necessary to develop foundation design criteria, pavement section designs and structural grading recommendations.

- 7.5.1 Building pad areas or soil areas to receive fill, should be scarified to a depth of eight to ten inches and compacted to at least 90% relative compaction near optimum moisture content.
- 7.5.2 Structural fill should then be compacted in horizontal layers and brought to final subgrade elevations. Structural fill should be placed in level 8-inch loose lifts. Each lift should be moisture conditioned at or near optimum moisture content and then compacted to a minimum of 90% relative compaction.
- 7.5.3 The cut portion of cut-fill transition building pads or pavements should be undercut at least one foot vertically for five feet laterally into the cut face from the point of transition and replaced with properly compacted structural fill.
- 7.5.4 Where cut and fill soil slopes are required, they should be constructed at a maximum gradient of 2:1 (horizontal to vertical).
- 7.5.5 Fills placed on slopes greater than 5H:1V (if any) should be keyed into the native slope. Keys should be constructed no more than five vertical feet in height and a minimum of six feet wide.

7.6 Grading – Underground Utilities

- 7.6.1 Underground utility trenches within structural areas (building pads and roadways) should be backfilled with properly compacted Class E backfill material. Importation of bedding and backfill should be planned for due to the prevalence of fine-grained clay soils over the surface of the site.
- 7.6.2 Trench backfill should be placed in loose lifts not exceeding eight inches. The lifts should be compacted to a minimum of 90% relative compaction at or near optimum moisture content.
- 7.6.3 Bedding and pipe zone backfill should extend from the bottom of the trench excavation to a minimum of six inches above the crown of the pipe. Pipe bedding material should consist of Class A backfill material as defined by the Standard Specifications for Public Works (Orange Book). Bedding and pipe zone material should be hand compacted in six-inch maximum lifts.

7.7 Grading – Pavement and Flatwork Areas

7.7.1 Soil Conservation Service data and our local experience indicate that site soils are not aggressive for either Type II or Type IP concrete. However, site soils are moderately

aggressive (corrosive) to very aggressive for uncoated steel. The project structural engineer should consider the use of coatings or other cathodic protection where uncoated steel may be in contact with native site soils.

- 7.7.2 Pavement and flatwork subgrade areas underlain by native soil materials should be scarified to a depth of eight to ten inches and moisture conditioned at or near optimum moisture content. The upper six inches of pavement subgrade soils where clays are present should be compacted from 85% to 90% compaction at two percent below to three percent above optimum moisture. Where granular soils are present, they should be compacted to a minimum of 90% relative compaction at or near optimum moisture content.
- 7.7.3 The subgrade soils for pavements should be finished to a compacted smooth unyielding surface. We recommend proof-rolling the subgrade with a loaded water truck (or similar equipment) to verify the stability of the subgrade prior to placing aggregate base.
- 7.7.4 Aggregate base used to support pedestrian and vehicular pavements should be compacted to a minimum of 95% relative compaction.

7.8 Pavements

Pavement sections will be determined after the completion of mass grading. At that time, samples will need to be taken for R-value determinations. Traffic volumes should be provided by the traffic engineer for the design of streets. Due to the weak surficial soils on the site, pavements sections are likely to be thicker than minimum sections. Structural sections may be reduced where engineered fills exceed approximately one to two feet in thickness.

7.9 Site Drainage and Erosion Control

- 7.9.1 Temporary erosion control during construction should be as per the approved storm water pollution prevention plan (SWPPP).
- 7.9.2 Adequate drainage is crucial to reduce the potential for differential soil movement, erosion and subsurface seepage. The site should be graded and maintained such that surface drainage is directed away from structures and the top of slopes into swales or other controlled drainage devices.
- 7.9.3 On-site infiltration basins are likely to drain slowly where clay soils are present. This may result in larger than average areas needed for this purpose.
- 7.9.4 Reseeding of disturbed areas or reestablishing organic surface layers as appropriate is essential to reducing post construction erosion and related repair costs.
- 7.9.5 Soil slopes constructed steeper than recommended in Section 7.5.4 or where subject to concentrated flows in excess of two feet per second should be stabilized with riprap, slope netting or other mechanical methods as designed by the project Civil Engineer.
- 7.9.6 An interceptor ditch or drain should be constructed at the top or bottom of the cut slopes for roads or buildings.

8.0 CLOSURE

8.1 Limitations

The recommendations of this limited geotechnical report pertain only to the site investigated and are based upon the assumption that a site specific geotechnical investigation will be conducted prior to final design. This report is intended to facilitate the development of grading plans and details and to support mass grading of the site only. The evaluation or identification of the potential presence of hazardous or corrosive materials was not part of the scope of services provided by RCI.

The findings of this report are valid as of the present date. However, changes in the conditions of a property can occur with the passage of time, whether due to natural processes or the works of man on this or adjacent properties. In addition, changes in applicable or appropriate standards may occur, whether they result from legislation or the broadening of knowledge. Accordingly, the findings of this report may be invalidated wholly or partially by changes outside our control.

9.0 REFERENCES

- 1. Bell and Trexler, 1979 Carson City Quadrangle Earthquake Hazards Map, Nevada Bureau of Mines and Geology, Scale 1:24,000.
- 2. Trexler, 1977, Carson City Quadrangle Geologic Map, Nevada Bureau of Mines and Geology, Scale 1:24,000.
- 3. Katzer, T. 1980, Carson City Quadrangle, General Groundwater Map, Nevada Bureau of Mines and Geology, Scale 1:24,000.
- 4. Natural Resources Conservation Service Website, Soil Survey of Carson City Area, Nevada, (http://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm).
- 5. Manhard Consulting, Division of Deed Document, Anderson Family Associates, May 2016.
- 6. Washoe County Regional Transportation Commission, 2016 Standard Specifications for Public Works Construction.

340 N. Minnesota St. Carson City, NV 89703 775 883-1600

FIGURE 1 VICINITY MAP

LITTLE LANE CARSON CITY, NV

170

PROJECT NO. 19-144-1

340 N. Minnesota St. Carson City, NV 89703 775 883-1600

FIGURE 2 SITE PLAN

LITTLE LANE CARSON CITY, NV

PROJECT NO. 19-144.1

171

GL

Kgr- Cretaceous Hornblende-Biotite Granodiorite

Mzvs- Triassic-Jurassic Volcanic and Sedimentary Rocks

Map Reference: Nevada Bureau of Mines and Geology, Map 118, Geologic Map of Carson City 30X60 Minute Quadrangle, J. Stewart, 1999

340 N. Minnesota St. Carson City, NV 89703 775 883-1600

FIGURE 3 GEOLOGIC MAP

LITTLE LANE CARSON CITY, NV

PROJECT NO. 19-144.1

Google Earth 2019

Quaternary Fault (Inactive)
Active Holocene Fault
Undifferentiated Quaternary Fault (< 6 million years)

340 N. Minnesota St. Carson City, NV 89703 775 883-1600

FIGURE 4 FAULT MAP

LITTLE LANE PROJECT CARSON CITY, NV

PROJECT NO. 19-144.1

173

340 N. Minnesota St. Carson City, NV 89703 775 883-1600

FIGURE 5 SOILS MAP

LITTLE LANE CARSON CITY, NV

PROJECT NO. 19-144.1

APPENDIX A

Field Investigation

TEST PIT NUMBER TP-1 Resource Concepts, Inc. 4010 Technology Way Carson City, Nevada 89703 775-883-1600 **CLIENT** Bates Homes PROJECT NAME Little Lane PROJECT LOCATION _Carson City, Nevada PROJECT NUMBER 19-144.1 DATE STARTED 3/3/19 COMPLETED 3/3/19 GROUND ELEVATION _____ TEST PIT SIZE __ EXCAVATION CONTRACTOR _____ **GROUND WATER LEVELS:** EXCAVATION METHOD _____ AT TIME OF EXCAVATION _---LOGGED BY CK CHECKED BY GL AT END OF EXCAVATION _---NOTES AFTER EXCAVATION _---SAMPLE TYPE NUMBER GRAPHIC LOG DEPTH (ft) U.S.C.S. MATERIAL DESCRIPTION 0.0 (CL) SANDY LEAN CLAY - Hard, Slightly Moist, Dark Brown GENERAL BH / TP / WELL - GINT STD US LAB.GDT - 4/11/19 16:36 - C:\USERSIPUBLIC\DOCUMENTS\BENTLEY\GINT\PROJECTS\LITTLE LANE BATES HOMES.GPJ CL 2.5 (SC) CLAYEY SAND - Stiff, Moist to Saturated, Brown 5.0 7.5 10.0 Bottom of test pit at 10.0 feet.

Resource Concepts, Inc. 40/10 Technology Way Carson City, Nevadia 89703 775-883-1600 TEST PIT NUMBER TP-2 PAGE 1 OF 1

CLIENT Bates Homes						PROJECT NAME Little Lane			
PROJECT NUMBER 19-144.1						PROJECT LOCATION Carson City, Nevada			
DATE STARTED 3/3/19 COMPLETED 3/3/19				COMPLE	TED 3/3/19	GROUND ELEVATION	TEST PIT SIZE		
EXCA	/ATION (CONTRACTOR				GROUND WATER LEVELS:			
EXCA\	/ATION I	METHOD				AT TIME OF EXCAVATION _	AT TIME OF EXCAVATION		
LOGGI	ED BY _	CK	(CHECKE	D BY GL	AT END OF EXCAVATION _			
NOTES	3					AFTER EXCAVATION			
DEPTH (ft)	SAMPLE TYPE NUMBER	TESTS	U.S.C.S.	GRAPHIC LOG		MATERIAL DESCRI	PTION		
0.0				/////	(CL) SANDY LE	AN CLAY - Hard, Slightly Moist, Dark E	Brown		
2.5			CL	3	0				
5.0		Fines = 33%	SC	7.	4	AND - Stiff, Moist to Saturated, Brown			
			CL	9.	0	AN CLAY - Hard, Saturated, Dark Gray			
10.0			SP	10	(SP) PORLY GR	ADED SAND - Medium Dense, Satura	•		
						Bottom of test pit at 1	0.0 feet.		

GENERAL BH / TP / WELL - GINT STD US LAB.GDT - 4/1/1/9 16:36 - C:\USERS\PUBLIC\DOCUMENTS\BENTLEY\GINT\PROJECTS\LITTLE LANE BATES HOMES.GPJ

TEST PIT NUMBER TP-3 Resource Concepts, Inc. 4010 Technology Way Carson City, Nevada 89703 775-883-1600 PROJECT NAME Little Lane **CLIENT** Bates Homes PROJECT LOCATION Carson City, Nevada PROJECT NUMBER 19-144.1 DATE STARTED 3/3/19 COMPLETED 3/3/19 GROUND ELEVATION _______ TEST PIT SIZE _____ EXCAVATION CONTRACTOR _____ **GROUND WATER LEVELS:** EXCAVATION METHOD _____ AT TIME OF EXCAVATION _---LOGGED BY CK CHECKED BY GL AT END OF EXCAVATION _---NOTES AFTER EXCAVATION _---SAMPLE TYPE NUMBER GRAPHIC LOG DEPTH (ft) U.S.C.S. **TESTS** MATERIAL DESCRIPTION 0.0 (SC) CLAYEY SAND - Medium Dense, Moist to Saturated, Dark Brown with mottling 3'-5' GENERAL BH / TP / WELL - GINT STD US LAB.GDT - 4/11/19 16:36 - C:\USERSIPUBLIC\DOCUMENTS\BENTLEY\GINT\PROJECTS\LITTLE LANE BATES HOMES.GPJ Fines = 44% 2.5 SC 5.0 7.5

Bottom of test pit at 10.0 feet.

10.0

TEST PIT NUMBER TP-4 Resource Concepts, Inc. 4010 Technology Way Carson City, Nevada 89703 775-883-1600 **CLIENT** Bates Homes PROJECT NAME Little Lane PROJECT NUMBER 19-144.1 PROJECT LOCATION Carson City, Nevada **DATE STARTED** 3/3/19 **COMPLETED** 3/3/19 GROUND ELEVATION _____ TEST PIT SIZE __ EXCAVATION CONTRACTOR _____ **GROUND WATER LEVELS:** EXCAVATION METHOD _____ AT TIME OF EXCAVATION _---LOGGED BY CK CHECKED BY GL AT END OF EXCAVATION ---NOTES AFTER EXCAVATION ---SAMPLE TYPE NUMBER GRAPHIC LOG U.S.C.S. **TESTS** MATERIAL DESCRIPTION 0.0 (SM) SILTY SAND - Loose to Medium Dense, Moist, Dark Brown Fines = 30% SM 2.5 (SC) CLAYEY SAND - Medium Dense, Moist, Brown SC 5.0 (CL) SANDY LEAN CLAY - Hard, Wet to Saturated, Light Brown with mottling 7.5 CL

GENERAL BH / TP / WELL - GINT STD US LAB.GDT - 4/11/19 16:36 - C:\USERSIPUBLIC\DOCUMENTS\BENTLEY\GINT\PROJECTS\LITTLE LANE BATES HOMES.GPJ

Bottom of test pit at 10.0 feet.

TEST PIT NUMBER TP-5 Resource Concepts, Inc. 4010 Technology Way Carson City, Nevada 89703 775-883-1600 **CLIENT** Bates Homes **PROJECT NAME** Little Lane PROJECT LOCATION _Carson City, Nevada PROJECT NUMBER 19-144.1 DATE STARTED 3/3/19 COMPLETED 3/3/19 GROUND ELEVATION _____ TEST PIT SIZE __ EXCAVATION CONTRACTOR _____ **GROUND WATER LEVELS:** EXCAVATION METHOD _____ AT TIME OF EXCAVATION _---LOGGED BY CK CHECKED BY GL AT END OF EXCAVATION _---NOTES AFTER EXCAVATION _---SAMPLE TYPE NUMBER GRAPHIC LOG DEPTH (ft) U.S.C.S. MATERIAL DESCRIPTION 0.0 (CL) SANDY LEAN CLAY - Hard, Moist to Saturated, Light to Dark Brown GENERAL BH / TP / WELL - GINT STD US LAB.GDT - 4/11/19 16:36 - C:\USERSIPUBLIC\DOCUMENTS\BENTLEY\GINT\PROJECTS\LITTLE LANE BATES HOMES.GPJ 2.5 CL 5.0 7.5 (SC) CLAYEY SAND - Stiff, Saturated, Brown SC Bottom of test pit at 10.0 feet.

TEST PIT NUMBER TP-6 Resource Concepts, Inc. 4010 Technology Way Carson City, Nevada 89703 775-883-1600 **CLIENT** Bates Homes **PROJECT NAME** Little Lane PROJECT LOCATION Carson City, Nevada PROJECT NUMBER 19-144.1 DATE STARTED 3/3/19 COMPLETED 3/3/19 GROUND ELEVATION _____ TEST PIT SIZE __ EXCAVATION CONTRACTOR _____ **GROUND WATER LEVELS:** EXCAVATION METHOD _____ AT TIME OF EXCAVATION _---LOGGED BY CK CHECKED BY GL AT END OF EXCAVATION _---**NOTES** AFTER EXCAVATION ---SAMPLE TYPE NUMBER GRAPHIC LOG U.S.C.S. **TESTS** MATERIAL DESCRIPTION 0.0 (SC) CLAYEY SAND - Dense, Moist, Dark Brown SC Fines = 35% (CL) SANDY LEAN CLAY - Stiff, Moist to Saturated, Brown wu=ith mottling below approx. 4' GENERAL BH / TP / WELL - GINT STD US LAB.GDT - 4/11/19 16:36 - C.:USERSIPUBLIC\DOCUMENTS\BENTLEY\GINT\PROJECTS\LITTLE LANE BATES HOMES.GPJ 2.5 CL 5.0

Fines = 13%

SP

7.5

10.0

Bottom of test pit at 10.0 feet.

(SC-SM) CLAYEY SILTYSAND - Medium Dense, Wet to Saturated, Light Brown

(SP) PORLY GRADED SAND - Medium Dense, Saturated, Light Brown

APPENDIX B

Laboratory Test Results

ATTERBERG LIMITS' RESULTS Resource Concepts, Inc. 4010 Technology Way Carson City, Nevada 89703 775-883-1600 CLIENT Bates Homes PROJECT NAME Little Lane PROJECT NUMBER 19-144.1 PROJECT LOCATION Carson City, Nevada 60 (CL) (CH) 50 L A S T I 40 C T Y 30 ١ N D E X 20 10 ATTERBERG LIMITS - GINT STD US LAB.GDT - 4/12/19 11:07 - C:\USERS\PUBLIC\DOCUMENTS\BENTLEY\GINT\PROJECTS\LITTLE LANE BATES HOMES.GPJ CL-ML (ML) (MH) 0 20 40 60 80 100 LIQUID LIMIT PL **TEST PIT DEPTH** LL PI Fines Classification TP-2 1.0 37 20 SANDY CLAY (CL) 17

- 183

GRAIN SIZE DISTRIBUTION

C:\USERS\PUBLIC\DOCUMENTS\BENTLEY\GINT\PROJECTS\LITTLE LANE BATES HOMES.GPJ

LAB.

S

STD

•

TP-6

7.0

9.5

0.515

0.173

PROJECT NAME Little Lane **CLIENT** Bates Homes PROJECT NUMBER 19-144.1 PROJECT LOCATION Carson City, Nevada U.S. SIEVE OPENING IN INCHES U.S. SIEVE NUMBERS **HYDROMETER** 1/23/8 3 810 14 16 20 30 40 50 60 100 140 200 100 95 90 85 80 Ø 75 70 65 BY WEIGHT 60 55 PERCENT FINER 50 45 40 35 30 25 20 15 10 5 10 0.01 0.001 **GRAIN SIZE IN MILLIMETERS GRAVEL** SAND **COBBLES** SILT OR CLAY coarse fine coarse medium fine PL Classification LL Ы Сс Cu **DEPTH BOREHOLE** ● | TP-2 3.5 **CLAYEY SAND (SC)** TP-3 2.0 **CLAYEY SAND (SC)** \mathbf{x} ▲ TP-4 1.0 SILTY SAND (SM) TP-6 0.5 **CLAYEY SAND (SC)** ⊙ | TP-6 7.0 **CLAYEY SAND (SC)** DEPTH **BOREHOLE** D100 D60 D30 D10 %Gravel %Sand %Silt %Clay 0.247 TP-2 3.5 4.75 0.0 67.0 33.0 TP-3 2.0 0.075 44.3 × 184 TP-4 1.0 4.75 0.263 0.0 30.3 69.7 TP-6 0.5 0.075 35.1

1.0

85.8

13.2

TRAFFIC ANALYSIS

JUNE 2019

Prepared by: Solaegui Engineers, Ltd. 715 H Street Sparks, Nevada 89431 (775) 358-1004

LITTLE LANE VILLAGE TRAFFIC ANALYSIS

JUNE 2019

Prepared by: Solaegui Engineers, Ltd. 715 H Street Sparks, Nevada 89431 (775) 358-1004

TABLE OF CONTENTS

EXECUTIVE SUMMARY	3
INTRODUCTIONSTUDY AREAEXISTING AND PROPOSED LAND USESEXISTING AND PROPOSED ROADWAYS AND INTERSECTIONS	4 4
TRIP GENERATION	7
TRIP DISTRIBUTION AND ASSIGNMENT	8
EXISTING AND PROJECTED TRAFFIC VOLUMES	8
INTERSECTION CAPACITY ANALYSIS	15
RECOMMENDATIONS	21
APPENDIX	22
LIST OF FIGURES	
FIGURE 1 - VICINITY MAP	5
FIGURE 2 - TRIP DISTRIBUTION	9
FIGURE 3 - TRIP ASSIGNMENT	10
FIGURE 4 - EXISTING TRAFFIC VOLUMES	11
FIGURE 5 - EXISTING PLUS PROJECT TRAFFIC VOLUMES	12
FIGURE 6 - 2040 BASE TRAFFIC VOLUMES	13
FIGURE 7 - 2040 BASE PLUS PROJECT TRAFFIC VOLUMES	14

LITTLE LANE VILLAGE TRAFFIC ANALYSIS

EXECUTIVE SUMMARY

The proposed Little Lane Village development will be located in Carson City, Nevada. The project site is generally located north of Little Lane, south of 5th Street, east of Roop Street and west of Saliman Road. The project site is currently undeveloped land. The purpose of this study is to address the project's impact upon the adjacent street network. The Saliman Road intersections with Fairview Drive, 5th Street, and Little Lane; the Little Lane intersections with Parkland Avenue and Spartan Avenue; and the 5th Street/Parkland Avenue intersection have been identified for AM and PM peak hour capacity analysis for the existing, existing plus project, 2040 base, and 2040 base plus project scenarios.

The proposed Little Lanc Village development will consist of the construction of a subdivision containing 151 lots. Project access will be provided from the public street extensions of Parkland Avenue, Spartan Avenue, and Elaine Street. The proposed Little Lanc Village development is anticipated to generate 1,425 average weekday trips with 112 trips occurring during the AM peak hour and 149 trips occurring during the PM peak hour.

Traffic generated by the Little Lane Village development will have some impact on the adjacent street network. The following recommendations are made to mitigate project traffic impacts.

It is recommended that any required signing, striping or traffic control improvements comply with Carson City requirements.

It is recommended that the Little Lane/Parkland Avenue intersection be improved as four-leg intersection and contain stop sign control and single ingress and egress lanes at the north and south approaches.

It is recommended that the Little Lane/Spartan Avenue intersection be improved as four-leg intersection and contain stop sign control and single ingress and egress lanes at the north and south approaches.

It is recommended that the segment of Little Lane adjacent to the project site be improved to match the existing segment of Little Lane directly to the west of the site.

It is recommended that the on-site streets be constructed per Carson City street standards.

INTRODUCTION

STUDY AREA

The proposed Little Lane Village development will be located in Carson City, Nevada. The project site is generally located north of Little Lane, south of 5th Street, east of Roop Street and west of Saliman Road. Figure 1 shows the approximate location of the project site. The purpose of this study is to address the project's impact upon the adjacent street network. The Saliman Road intersections with Fairview Drive, 5th Street, and Little Lane; the Little Lane intersections with Parkland Avenue and Spartan Avenue; and the 5th Street/Parkland Avenue intersection have been identified for AM and PM peak hour capacity analysis for the existing, existing plus project, 2040 base, and 2040 base plus project scenarios.

EXISTING AND PROPOSED LAND USES

The project site is currently undeveloped land. Adjacent land generally includes single family homes to the north, south, and west and multi-family dwelling units to the east. The proposed Little Lane Village development will consist of the construction of a subdivision containing a total of 151 lots. Project access will be provided from the public street extensions of Parkland Avenue, Spartan Avenue, and Elaine Street.

EXISTING AND PROPOSED ROADWAYS AND INTERSECTIONS

Saliman Road is a four-lane north/south roadway with two through lanes in each direction north of Fairview Drive and a two-lane roadway with one lane in each direction directly south of Fairview Drive. The speed limit is posted for 35 miles per hour on the four-lane segment and 25 miles per hour on the two-lane segment. A 15 mile per hour school speed limit zone exists just south of Little Lane. Roadway improvements on the four-lane segment generally include curb, gutter, sidewalk, and a bike lane on both sides of the street with a center two-way left turn lane. Roadway improvements on the two-lane segment include curh, gutter and sidewalk on the west side of the street and a graded shoulder on the east side of the street. Bike lanes exist on both sides of the street and a striped centerline exists.

5th Street is a two-lane east/west roadway with one through lane in each direction in the vicinity of the project site. The speed limit transitions from 30 miles per hour on the west segment to 40 miles per hour on the east segment approximately 300 feet east of Saliman Road. Roadway improvements generally include curb, gutter, sidewalk, and a bike lane on both sides of the street with a center two-way left turn lane west of Saliman Road. East of Saliman road the roadway generally contains curb, gutter and sidewalk on the south side of the street and a graded shoulder on the east side of the street.

LEGEND

LITTLE LANE VILLAGE

Little Lane is a two-lane cast/west roadway with one through lane in each direction in the vicinity of the site. The speed limit is posted for 25 miles per hour. Roadway improvements include curb, gutter, sidewalk and a bike lane on both sides of the street with a striped centerline west of the project site. The roadway contains curb, gutter and sidewalk on the south side of the street and graded shoulders on the north side of the street along the project frontage. Half-street improvements will be constructed along the project frontage with development of the site.

Fairview Drive is a four-lane east/west roadway with two through lanes in each direction in the vicinity of Saliman Road. The speed limit is posted for 35 miles per hour. Roadway improvements generally include curb, gutter, sidewalk, and a bike lane on both sides of the street with a center two-way left turn lane east of Saliman Road and a striped centerline west of Saliman Road.

Parkland Avenue is a two-lane north/south roadway with one through lane in each direction north and south of the project site. The speed limit is not posted but anticipated to be 25 miles per hour. Roadway improvements include curb, gutter and sidewalk on both sides of the street. Parkland Avenue will be constructed through the site with development of the project.

Spartan Avenue is a two-lane north/south roadway with one through lane in each direction south of Little Lane. The speed limit is not posted but anticipated to be 25 miles per hour. Roadway improvements include curb, gutter and sidewalk on both sides of the street. Spartan Avenue will be constructed north of Little Lane with development of the project.

The Saliman Road/Fairview Drive intersection is a signalized four-leg intersection with protected/ permissive left turn phasing at all approaches. The north and south approaches each contain one left turn lane, one through lane, and one right turn lane. The east and west approaches each contain one left turn lane, one through lane, and one shared through-right turn lane. Pedestrian crosswalks exist at all approaches.

The Saliman Road/5th Street intersection is a signalized four-leg intersection with protected/permissive left turn phasing at the north and south approaches and permissive left turn phasing at the east and west approaches. The north, south, and west approaches each contain one left turn lane, one through lane, and one shared through-right turn lane. The east approach contains one left turn lane and one shared through-right turn lane. Pedestrian crosswalks exist at all approaches.

The Saliman Road/Little Lanc intersection is an unsignalized three-leg intersection with stop control at the west approach. The north approach contain one through lane and one shared through-right turn lane. The south approach contains one left turn lane and two through lanes. The west approach contains one shared left turn-right turn lane. A pedestrian crosswalk exists at the west approach.

The 5th Street/Parkland Avenue intersection is an unsignalized three-leg intersection with stop control at the south approach. The west approach contain one shared through-right turn lane. The east approach contains one left turn lane and one through lane. The south approach contains one shared left turn-right turn lane. A pedestrian crosswalk exists at the south approach.

The Little Lane/Parkland Avenue intersection is an unsignalized three-leg intersection with stop control at the south approach. The west approach contain one shared through-right turn lane. The east approach contains one shared left turn-through lane. The south approach contains one shared left turn-right turn lane. A pedestrian crosswalk exists at the south approach. With development of the project the intersection will be improved as an unsignalized four-leg intersection. At a minimum, the four-leg intersection will contain one shared left turn-through-right turn lane at all approaches.

The Little Lane/Spartan Avenue intersection is an unsignalized three-leg intersection with stop control at the south approach. The west approach contain one shared through-right turn lane. The east approach contains one shared left turn-through lane. The south approach contains one shared left turn-right turn lane. A pedestrian crosswalk exists at the south approach. With development of the project the intersection will be improved as an unsignalized four-leg intersection. At a minimum, the four-leg intersection will contain one shared left turn-through-right turn lane at all approaches.

TRIP GENERATION

In order to assess the magnitude of traffic impacts of the proposed development on the key intersections, trip generation rates and peak hours had to be determined. Trip generation rates were obtained from the Tenth Edition of *ITE Trip Generation* (2018). ITE Land Use 210 "Single Family Detached Housing" was used to calculate trips generated by the 151 lot subdivision. Trip generation for the proposed development was calculated for the peak hours occurring between 7:00 AM and 9:00 AM and 4:00 PM and 6:00 PM which correspond to the peak hours of adjacent street traffic. Table 1 shows a summary of the average daily traffic (ADT) volumes and peak hour volumes generated by the project. The trip generation worksheets are included in the Appendix.

Т	TABLI RIP GENE		N				
		AN	I PEAK I	HOUR	PN	1 PEAK 1	HOUR
LAND USE	ADT	IN	OUT	TOTAL	IN	OUT	TOTAL
Single Family Homes (151 Dwelling Units)	1,425	28	84	112	94	55	149

As shown in Table 1, the proposed Little Lane Village development is anticipated to generate 1,425 average weekday trips with 112 trips occurring during the AM peak hour and 149 trips occurring during the PM peak hour.

TRIP DISTRIBUTION AND ASSIGNMENT

The distribution of project traffic to the key intersections was based on existing peak hour traffic patterns and the locations of existing and future attractions and productions. The trip distribution is shown in Figure 2. The project trips shown in Table 1 were subsequently assigned to the key intersections based on the trip distribution shown on Figure 2. Figure 3 shows the AM and PM peak hour trip assignment at the key intersections. Trip assignment is also shown at the 5th Street/Elaine Street intersection even though it was not identified for capacity analysis.

EXISTING AND PROJECTED TRAFFIC VOLUMES

Figure 4 shows the existing AM and PM peak hour traffic volumes at the key intersections. The existing traffic volumes were obtained from traffic counts conducted in May of 2019. Figure 5 shows the existing plus project traffic volumes for the AM and PM peak hours. The existing plus project traffic volumes were obtained by adding the project trips shown on Figure 3 to the existing traffic volumes shown on Figure 4.

Figure 6 shows the 2040 base AM and PM peak hour traffic volumes at the key intersections. The 2040 base traffic volumes at the Saliman Road intersections with Fairview Drive and 5th Street were estimated by applying growth factors to 2035 turning movement volumes obtained directly from Carson City's traffic forecasting model. Growth factors at each intersection were based on 2025 and 2040 daily traffic volumes also obtained from Carson City's traffic forecasting model. The 2040 base traffic volumes at the remaining intersections were estimated based on 2040 base traffic volumes at the adjacent signalized intersections.

Figure 7 shows the 2040 base plus project traffic volumes at the key intersections for the AM and PM peak hours. The 2040 base plus project traffic volumes were obtained by adding the project trips shown on Figure 3 to the 2040 base traffic volumes shown on Figure 6.

LEGEND

PROJECT SITE

195

197

199

INTERSECTION CAPACITY ANALYSIS

The key intersections were analyzed for capacity based on procedures presented in the *Highway Capacity Manual (6th Edition)*, prepared by the Transportation Research Board, for unsignalized and signalized intersections.

The result of capacity analysis is a level of service (LOS) rating for each signalized intersection and unsignalized intersection minor movement. Level of service is a qualitative measure of traffic operating conditions where a letter grade "A" through "F", corresponding to progressively worsening traffic operation, is assigned to the intersection or minor movement.

The *Highway Capacity Manual* defines level of service for stop controlled intersections in terms of computed or measured control delay for each minor movement. Level of service is not defined for the intersection as a whole. The level of service criteria for unsignalized intersections is shown in Table 2.

LEVEL OF SERVICE CRITI	TABLE 2 ERIA FOR UNSIGNALIZED INTERSECTIONS
LEVEL OF SERVICE	DELAY RANGE (SEC/VEH)
A	≤10
В	>10 and ≤15
С	>15 and ≤25
D	>25 and ≤35
Е	>35 and ≤50
F	>50

Level of service for signalized intersections is stated in terms of the average control delay per vehicle for a peak 15 minute analysis period. The level of service criteria for signalized intersections is shown in Table 3.

LEVEL OF SERVICE O	TABLE 3 CRITERIA FOR SIGNALIZED INTERSECTIONS
LEVEL OF SERVICE	CONTROL DELAY PER VEHICLE (SEC)
A	≤10
В	>10 and ≤20
С	>20 and ≤35
D	>35 and ≤55
Е	>55 and ≤80
F	>80

Table 4 shows a summary of the level of service and delay results at the key intersections for the existing, existing plus project, 2040 base, and 2040 base plus project scenarios. The intersection operational analysis worksheets are included in the Δppendix.

INTERSECTION I		TABLE : F SERVI		DELAY	' RESUL	TS		
	EXIS	TING	1	TING + JECT	2040	BASE		BASE + JECT
INTERSECTION	AM	PM	AM	PM	AM	PM	AM	PM
Saliman/Fairview (Signal)	C27.9	C29,3	C27.9	C29.3	C32.9	D38.0	C32.9	D38.2
Saliman/5th (Signal)	C23.4	C22.5	C23.6	C22.6	C29,1	C25.1	C29.6	C25.6
Saliman/Little (Stop at West Leg) EB Left-Thru NB Left	B14.8 A8.3	C16.8 A8.4	C15.2 A8.4	C19.6 A8.5	C19.1 A8.7	D25.3 A8.7	C20.2 A8.8	D33.4 A8.8
5th/Parkland (Stop at South Leg) WB Left NB Left-Right	A7.8 B14.0	A8.6 B14.2	A7.8 B14.3	A8.6 C15.0	A7.8 C15.7	A9.0 C18.4	A7.8 C16.3	A9.1 C19.7
Little/Parkland (Stop at South Leg) WB Left NB Left-Right Little/Parkland (Stop at North/South Legs) EB Left WB Left NB Left-Thru-Right SB Left-Thru-Right	A7.4 A9.7 N/A N/A N/A N/A	A7.7 B10.7 N/A N/A N/A N/A	N/A N/A A7.6 A7.4 B10.2 B10.0	N/A N/A A7.5 A7.7 B11.8 B10.4	A7.4 B10.1 N/A N/A N/A N/A	A7.9 B11.3 N/A N/A N/A N/A	N/A N/A A7.7 A7.4 B10.7 B10.5	N/A N/A A7.6 A7.9 B12.6 B11.0
Little/Spartan (Stop at South Leg) WB Left NB Left-Right Little/Spartan (Stop at North/South Legs) EB Left WB Left NB Left-Thru-Right SB Left-Thru-Right	A7.4 A9.2 N/A N/A N/A N/A	A7.7 B10.3 N/A N/A N/A	N/A N/A A7.6 A7.4 A9.4 B10.6	N/A N/A A7.6 A7.7 B11.0 B11.2	A7.5 A9.6 N/A N/A N/A N/A	A7.8 B11.2 N/A N/A N/A N/A	N/A N/A A7.7 A7.5 B10.0 B11.4	N/A N/A A7.6 A7.8 B12.3 B12.0

Carson City design standards indicate that LOS D is the level of service standard for all city maintained streets and intersections. The intersection level of service and delay results are discussed on the following pages.

Saliman Road/Fairview Drive Intersection

The Saliman Road/Fairview Drive intersection was analyzed as a signalized four-leg intersection with the existing left turn phasing for all study scenarios. The intersection currently operates at LOS C with a delay of 27.9 seconds per vehicle during the AM peak hour and 29.3 seconds per vehicle during the PM peak hour. For the existing plus project traffic volumes the intersection is anticipated to operate at LOS C with a delay of 27.9 seconds per vehicle during the AM peak hour and 29.3 seconds per vehicle during the PM peak hour. For the 2040 base traffic volumes the intersection is anticipated to operate at LOS C with a delay of 32.9 seconds per vehicle during the AM peak hour and LOS D with a delay of 38.0 seconds per vehicle during the PM peak hour. For the 2040 base plus project volumes the intersection is anticipated to operate at LOS C with a delay of 32.9 seconds per vehicle during the AM peak hour and LOS D with a delay of 38.2 seconds per vehicle during the PM peak hour. The intersection was analyzed with the existing approach lanes for all study scenarios. The Saliman Road/Fairview Drive intersection meets Carson City's policy LOS D standard for all study scenarios.

The project is anticipated to add traffic to the left turn movements at the north and west approaches of the Saliman Road/Fairview Drive intersection. Storage requirements were subsequently reviewed for these two left turn movements based on 95th percentile queue lengths from the intersection operational analysis. The operational analysis results for the existing plus project traffic volumes indicate 95th percentile queue lengths of 50 feet for the left turn movement at the west approach and 100 feet for the left turn movement at the north approach. The existing left turn lane at the west approach contains ± 100 feet of storage length which will accommodate the 50 foot storage requirement and the existing continuous two-way left turn lane at the north approach will easily accommodate the 100 foot storage requirement.

Saliman Road/5th Street Intersection

The Saliman Road/5th Street intersection was analyzed as a signalized four-lcg intersection with the existing left turn phasing for all scenarios. The intersection currently operates at LOS C with a delay of 23.4 seconds per vehicle during the AM peak hour and 22.5 seconds per vehicle during the PM peak hour. For the existing plus project traffic volumes the intersection will continue to operate at LOS C with delays slightly increasing to 23.6 seconds per vehicle during the AM peak hour and 22.6 seconds per vehicle during the PM peak hour. For the 2040 base traffic volumes the intersection is anticipated to operate at LOS C with a delay of 29.1 seconds per vehicle during the AM peak hour and 25.1 seconds per vehicle during the PM peak hour. For the 2040 base plus project volumes the intersection continues to operate at LOS C with delays slightly increasing to 29.6 seconds per vehicle during the AM peak hour and 25.6 seconds per vehicle during the PM peak hour. The intersection was analyzed with the existing approach lanes for all study scenarios. The Saliman Road/5th Street intersection meets Carson City's policy LOS D standard for all scenarios.

The project will add traffic to the left turn movements at the east and west approaches of the Saliman Road/5th Street intersection. Storage requirements were subsequently reviewed for the left turn movements based on 95th percentile queue lengths from the intersection operational analysis.

The operational analysis for the existing plus project volumes indicates 95th percentile queue lengths of 100 feet for the left turn movement at the west approach and 150 feet for the left turn movement at the east approach. The existing continuous two-way left turn lane at the west approach will accommodate the 100 foot requirement. However, the left turn pocket at the east approach contains ± 100 feet of storage length which will not accommodate the 150 foot requirement. It should be noted that the left turn pocket is also insufficient for existing volumes with the project anticipated to add only 1 vehicle during the AM peak hour and 3 vehicles during the PM peak hour.

Saliman Road/Little Lane Intersection

The Saliman Road/Little Lane intersection was analyzed as an unsignalized three-leg intersection with stop control at the west approach for all scenarios. The intersection minor movements currently operates at LOS B or better during the AM peak hour and LOS C or better during the PM peak hour. For the existing plus project traffic volumes the intersection minor movements operate at LOS C or better during the AM and PM peak hours. For the 2040 base traffic volumes the intersection minor movements are anticipated to operate at LOS C or better during the AM peak hour and LOS D or better during the PM peak hour. For the 2040 base plus project traffic volumes the intersection minor movements continue to operate at LOS C or better during the AM peak hour and LOS D or better during the PM peak hour. The intersection was analyzed with the existing approach lanes for all scenarios. The intersection meets Carson City's policy LOS D standard for all study scenarios.

The need for separate left and right turn lanes at the west approach of the Saliman Road/Little Lane intersection was reviewed. The existing PM peak hour traffic volumes indicate left turn volume of 115 vehicles and a right turn volume of 68 vehicles with the project anticipated to add 5 left turn vehicles and 16 right turn vehicles. The existing turning volumes could indicate that separate lanes should be considered. However, separate turn lanes do not appear to be needed based on the operational analysis which shows acceptable level of service operation as well as a 95th percentile queue length of 150 feet which will not impact the adjacent Little Lane/Spartan Avenue intersection. It should also be noted that Carson City review comments for the project state that Little Lane must be improved to match the existing street section to the west. This existing street section contains a through lane, a bike lane, and sidewalk on both sides of the street. Extending these improvement along the project frontage to Saliman Road will allocate the available Little Lanc width to only one shared left turn-right turn lane at the intersection. The new sidewalk on the north side of the street and the existing crosswalk at the west approach of the Saliman Road/ Little Lane intersection will provide a connection to the existing sidewalk facilities on the west side of Saliman Road. Saliman Road can be safely crossed using an existing crosswalk at 5th Street to the north and an existing midblock crosswalk to the south at the elementary school.

The need for an exclusive right turn deceleration lane at the north approach of the Saliman Road/Little Lane intersection was also reviewed. The existing traffic volumes at the intersection indicate a southbound right turn volume of over 100 vehicles per hour during the PM peak hour with the project anticipated to add only 7 vehicles during this same peak hour. Again, operational analysis indicates acceptable level of service operation without a right turn lane. In addition, it appears that right-of-way is not available to accommodate an exclusive right turn lane at this location.

5th Street/Parkland Avenue Intersection

The 5th Street/Parkland Avenue intersection was analyzed as an unsignalized three-leg intersection with stop control at the south approach for all scenarios. The intersection minor movements currently operates at LOS B or better during the AM and PM peak hours. For the existing plus project traffic volumes the intersection minor movements operate at LOS B or better during the AM peak hour and LOS C or better during the PM peak hour. For the 2040 base traffic volumes the intersection minor movements are anticipated to operate at LOS C or better during the AM and PM peak hours. For the 2040 base plus project traffic volumes the intersection minor movements continue to operate at LOS C or better during the AM and PM peak hours. The intersection was analyzed with the existing approach lanes for all scenarios. The intersection meets Carson City's policy LOS D standard.

Multi-way stop control was qualitatively reviewed at the 5th Street/Parkland Avenue intersection based on minimum volume thresholds presented in the *Manual on Uniform Traffic Control Devices* (MUTCD). The MUTCD states that multi-way stop control should be considered if the major street volume averages at least 300 vehicles per hour and the minor street averages at least 200 vehicles, pedestrians, and bicycles per hour for the same eight-hours of an average day. This study analyzed only the AM and PM peak hours. The existing plus project traffic volumes on Parkland Avenue amount to 42 AM vehicles per hour and 40 PM vehicles per hour with little pedestrian/bicycle activity observed at the intersection. The AM and PM peak hour minor street volumes are well below the 200 vehicle per hour threshold and therefore it can be assumed that traffic volumes during the remaining non-peak hours of an average day will also fall below the threshold.

Little Lane/Parkland Avenue Intersection

The Little Lane/Parkland Avenue intersection was initially analyzed as an unsignalized three-leg intersection with stop control at the south approach for the existing and 2040 base scenarios. The intersection minor movements currently operate at LOS B or better during the AM and PM peak hours. For the 2040 base traffic volumes the intersection minor movements are anticipated to operate at LOS B or better during the AM and PM peak hours. The intersection was subsequently analyzed as an unsignalized four-leg intersection with stop sign control at the north and south approaches for the existing plus project and 2040 base plus project scenarios. For the existing plus project traffic volumes the intersection minor movements operate at LOS B or better during the AM and PM peak hours. For the 2040 base plus project traffic volumes the intersection minor movements continue to operate at LOS B or better during the AM and PM peak hours. The three-leg intersection was analyzed with the existing approach lanes and the four-leg intersection was analyzed with single lanes at all approaches.

The need for exclusive left turn lanes at the east and west approaches of the Little Lane/Parkland Avenue intersection was reviewed based on AASHTO guidelines for left turn lanes on two-lane roadways. The guidelines list traffic volumes and operating speeds which necessitate the installation of left turn lanes on two-lane roads. The traffic volumes to be considered include advancing traffic volumes, opposing traffic volumes, and the percent of advancing traffic which is turning left.

The existing plus project traffic volumes do not trigger the need for exclusive left turn lanes on Little Lane based on the existing 25 mile per hour speed limit. Exclusive left turn lanes are not required at the north and south approaches based on the LOS B operation for the movements. Carson City comments for the project state that Little Lane adjacent to the site must be improved to match the existing street section to the west. This existing street section contains one through lane in each direction and bike lanes on both sides of the street.

Multi-way stop control was qualitatively reviewed at the Little Lane/Parkland Avenuc intersection based on minimum volume thresholds presented in the *Manual on Uniform Traffic Control Devices* (MUTCD). The MUTCD states that multi-way stop control should be considered if the major street volume averages at least 300 vehicles per hour and the minor street averages at least 200 vehicles, pedestrians, and bicycles per hour for the same eight-hours of an average day. This study analyzed only the AM and PM peak hours. The existing plus project traffic volumes on Parkland Avenue amount to 60 AM vehicles per hour and 38 PM vehicles per hour with little pedestrian/bicycle activity observed at the intersection. The AM and PM peak hour minor street volumes are well below the 200 vehicle per hour threshold and therefore it can be assumed that traffic volumes during the remaining non-peak hours of an average day will also fall below the threshold.

Little Lane /Spartan Avenue Intersection

The Little Lane/Spartan Avenue intersection was analyzed as an unsignalized three-leg intersection with stop control at the south approach for the existing and 2040 base scenarios. The intersection minor movements currently operate at LOS B or better during the AM and PM peak hours. For the 2040 base traffic volumes the intersection minor movements are anticipated to operate at LOS A during the AM peak hour and LOS B or better during the PM peak hour. The intersection was subsequently analyzed as an unsignalized four-leg intersection with stop sign control at the north and south approaches for the existing plus project and 2040 base plus project scenarios. For the existing plus project traffic volumes the intersection minor movements operate at LOS B or better during the AM and PM peak hours. For the 2040 base plus project traffic volumes the intersection minor movements continue to operate at LOS B or better during the AM and PM peak hours. The three-leg intersection was analyzed with the existing approach lanes and the four-leg intersection was analyzed with single lanes at all approaches.

The need for exclusive left turn lanes at the east and west approaches of the Little Lane/Spartan Avenue intersection was reviewed based on AASHTO guidelines for left turn lanes on two-lane roadways. The guidelines list traffic volumes and operating speeds which necessitate the installation of left turn lanes on two-lane roads. The traffic volumes to be considered include advancing traffic volumes, opposing traffic volumes, and the percent of advancing traffic which is turning left. The existing plus project traffic volumes do not trigger the need for exclusive left turn lanes on Little Lane based on the existing 25 mile per hour speed limit. Exclusive left turn lanes are not required at the north and south approaches based on the I.OS B operation for the movement. Carson City comments for the project state that Little Lane adjacent to the site must be improved to match the existing street section to the west. This existing street section contains one through lane in each direction and bike lanes on both sides of the street.

RECOMMENDATIONS

Traffic generated by the Little Lane Village development will have some impact on the adjacent street network. The following recommendations are made to mitigate project traffic impacts.

It is recommended that any required signing, striping or traffic control improvements comply with Carson City requirements.

It is recommended that the Little Lanc/Parkland Avenue intersection be improved as four-leg intersection and contain stop sign control and single ingress and egress lanes at the north and south approaches.

It is recommended that the Little Lane/Spartan Avenue intersection be improved as four-leg intersection and contain stop sign control and single ingress and egress lanes at the north and south approaches.

It is recommended that the segment of Little Lane adjacent to the project site be improved to match the existing segment of Little Lane directly to the west of the site.

It is recommended that the on-site streets be constructed per Carson City street standards.

APPENDIX

Single-Family Detached Housing

(210)

Vehicle Trip Ends vs: Dwelling Units

On a: Weekday

Setting/Location: General Urban/Suburban

Number of Studies: 159 Avg. Num. of Dwelling Units: 264

Directional Distribution: 50% entering, 50% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
9.44	4.81 - 19.39	2.10

Data Plot and Equation

Single-Family Detached Housing

(210)

Vehicle Trip Ends vs: Dwelling Units

On a: Weekday,

Peak Hour of Adjacent Street Traffic, One Hour Between 7 and 9 a,m,

Setting/Location: General Urban/Suburban

Number of Studies: 173 Avg. Num. of Dwelling Units: 219

Directional Distribution: 25% entering, 75% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.74	0.33 - 2.27	0.27

Data Plot and Equation

Single-Family Detached Housing

(210)

Vehicle Trip Ends vs: **Dwelling Units**

> On a: Weekday,

> > Peak Hour of Adjacent Street Traffic, One Hour Between 4 and 6 p.m.

Setting/Location:

General Urban/Suburban

Number of Studies:

190

Avg. Num. of Dwelling Units:

242

Directional Distribution: 63% entering, 37% exiting

Vehicle Trip Generation per Dwelling Unit

Average Rate	Range of Rates	Standard Deviation
0.99	0.44 - 2.98	0.24

Data Plot and Equation

HCS7 Signalized Intersection Results Summary General Information Intersection Information Agency Solaegui Engineers Duration, h 0.25 Analyst MSH Analysis Date Jun 4, 2019 Area Type Other Jurisdiction Carson City Time Period AM Peak Hour PHF 0.90 Urban Street Analysis Year Existing 1>7:00 Analysis Period Intersection Saliman & Fairview File Name SaFa19ax.xus Project Description **Demand Information** EB WB NB SB Approach Movement L T R L T R L T R R T L Demand (v), veh/h 37 172 5 75 266 131 12 240 299 107 89 79 Signal Information JI. Cycle, s 100.0 Reference Phase 2 772 Offset, s 0 Reference Point End Green 10.0 30.0 10.0 30.0 0.0 0.0 Uncoordinated No Simult. Gap E/W On Yellow 4.0 4.0 4.0 4.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S On Red 1.0 1.0 1.0 1.0 0.0 0.0 **Timer Results EBL EBT** WBL WBT NBL NBT SBL SBT Assigned Phase 5 2 6 3 8 7 4 Case Number 1.1 4.0 1.1 4.0 1.1 3.0 1.1 3.0 Phase Duration, s. 15.0 35.0 15.0 35.0 15.0 35.0 15.0 35.0 Change Period, (Y+Rc), s 5.0 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Max Allow Headway (MAH), s 3.1 0.0 3.1 0.0 3.1 3.2 3.1 3.2 Queue Clearance Time (gs), s 3.4 4.9 2.5 18.9 6.3 5.9 Green Extension Time (g_e) , s 0.0 0.0 0.0 0.0 0.0 1.3 0.1 1.5 Phase Call Probability 1.00 1.00 1.00 1.00 1.00 1.00 Max Out Probability 0.00 0.06 0.00 0.03 0.48 0.00 Movement Group Results EB WB NB SB Approach Movement L T R L Т R T R L T R Assigned Movement 5 2 12 6 16 3 8 7 18 4 14 Adjusted Flow Rate (v), veh/h 41 99 98 83 223 202 13 267 299 119 99 77 Adjusted Saturation Flow Rate (s), veh/h/ln 1781 1870 1781 1845 1870 1622 1781 1870 1539 1781 1870 1539 Queue Service Time (g_s) , s 1.4 3.9 3.9 2.9 9.5 9.9 0.5 11.6 16.9 4.3 3.9 3.7 Cycle Queue Clearance Time (g_c), s 4.3 1.4 3.9 3.9 2.9 9.5 9.9 0.5 11.6 16.9 3.9 3.7 Green Ratio (g/C) 0.40 0.30 0.30 0.40 0.30 0.30 0.40 0.30 0.30 0.40 0.30 0.30 Capacity (c), veh/h 424 561 554 536 561 486 562 561 462 432 561 462 Volume-to-Capacity Ratio (X) 0.097 0.176 0.177 0.156 0.397 0.415 0.024 0.475 0.647 0.275 0.176 0.166Back of Queue (Q), ft/In (95 th percentile) 26.2 82.5 54.3 201.1 184.9 81 8.3 224 266.9 79.4 78.3 60.5 Back of Queue (Q), veh/ln (95 th percentile) 1.0 3.2 2.1 7.9 3.2 7.4 0.3 8.8 10.5 3.1 2.4 3.1 Queue Storage Ratio (RQ) (95 th percentile) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Uniform Delay (d 1), s/veh 19.2 25.9 25.9 19.1 27.8 28.0 18.3 28.6 30.4 20.3 25.9 25.8 Incremental Delay (d 2), s/veh 0.0 0.7 0.7 0.0 2.1 2.6 0.0 0.2 2.5 0.1 0.1 0.1 Initial Queue Delay (d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 19.2 26.5 29.9 26.6 19.1 30.6 18.3 28.8 32.9 20.5 25.9 25.8 Level of Service (LOS) B C B C C C В C C C C C Approach Delay, s/veh / LOS 25.3 28.4 C C 30.7 C 23.7 C Intersection Delay, s/veh / LOS 27.9 C Multimodal Results EΒ WB NB SB 211 Pedestrian LOS Score / LOS 2.16 В 2.13 B 2.31 B 2,29 B

Bicycle LOS Score / LOS

0.91

A

1.44

A

Α

0.68

A

HCS7 Signalized Intersection Results Summary

General Inform	nation	THE PARTY OF	- 67	EACH	136	\$ P - V	1-2	-7-3	Intersec	tion Int	formati	on		J 41 J44 4	and .	
Agency	211	Solaegui Engineers			-				Duration		0.25			ŢŢĹ		
Analyst		MSH		Analys	sis Date	lun 4	2019	-	Area Ty				- 1 6			
Jurisdiction		Carson City		Time F			eak Ho	ır	PHF	J.G	0.90		프랑스			
Urban Street		Odradii Oity		-		-	Existing			Period	1> 7:	00			-	
Intersection		Saliman & Fairview		File Na		-	19px.xu	0	Allalysis	renou	127.	00	- 2 2			
Project Descrip	ition	Saliman & Fall view		THE IN	arrie	Sara	rapx.xu	5					- 4		1- /	
Troject Descrip	THO I		223	-	18	1000		D U	36391	11001	STATE OF	E	SUBSECTION NAMED IN	10000000		
Demand Inform	nation				EB			W	В	7	NB		-	SB		
Approach Move	ement			L	T	R	L	T	R	L	T	R	L	T	R	
Demand (v), v	eh/h			44	352	29	296	35		28	107	221	76	215	112	
E CONTRACTOR OF	AL WE		= 17-3	DAY IS	STORE !	MESS.	THE PE	18-18-1	31381	SOFIE	100	ES BA	11400	Tere!	(FIELD	
Signal Informa	ition						_ L	J	ba .						I	
Cycle, s	100.0	Reference Phase	2		1 8		R.		172	1			4	1	T.	
Offset, s	0	Reference Point	End	Green	10.0	30.0	10.0	30.		0.0		- 1	¥ 2	3	-	
Uncoordinated	No	Simult. Gap E/W	On	Yellow		4.0	4.0	4.0		0.0		7	-		KŤ	
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	1.0	1.0		0.0		-5	ō	7	Y	
	CP AS		1800	will	4-7-1				1	330	La serie	TOTAL STREET	15=0	NE BE		
Timer Results				EBI	-	EBT	WB	L	WBT	NB	L	NBT	SB	L	SBT	
Assigned Phase	е			5		2	1		6	3		8	7		4	
Case Number				1.1		4.0	1.1		4.0	1.1		3.0	1.1		3.0	
Phase Duration, s				15.0) ; ;	35.0	15.0		35.0	15.0	0	35.0	15.0)	35.0	
Change Period,	. (Y+R	c), S		5.0 5		5.0	5.0		5.0	5.0		5.0	5.0	5.0		
Max Allow Head	dway (/	MAH), s				0.0	3.1		0.0	3.1		3.2	3.1	3.2		
Queue Clearan	ce Time	e (gs), s		3.7			12.0)		3.1		13.5	5.0		12.2	
Green Extensio	n Time	(ge), s		0.0		0.0	0.0		0.0	0.0		1.3	0.0		1.3	
Phase Call Pro	bability			1.00			1.00	0]	0107-170	1.00	0	1.00	1.00		1.00	
Max Out Probal	bility	CONTRACTOR DUCCOS	-	0.00)		1.00	0		0.00	0	0.00	0.07	7	0.00	
Movement Gro	un Res	ulte	115	-	EB		12-2-	WB		-	NB		2000	SB	1,0	
Approach Move			-	L	T	R	L	T	R	L	T	R	L	T	R	
Assigned Move			-	5	2	12	1	6	16	3	8	18	7	4	14	
Adjusted Flow F		\ veh/h	_	49	214	209	329	267	244	31	119	218	84	239	113	
		w Rate (s), veh/h/li	n	1781	1870	1804	1781	1870		1781	1870	1539	1781	1870	1539	
Queue Service				1.7	9.1	9.2	10.0	11.6	_	1.1	4.8	11.5	3.0	10.2	5.6	
Cycle Queue C	SALES THE PROPERTY OF THE	STREET, STREET	entrant.	1.7	9.1	9.2	10.0	11.6		1.1	4.8	11.5	3.0	10.2	5.6	
Green Ratio (g		\ 3 × /1 v		0.40	0,30	0.30	0.40	0.30		0.40	0.30	0.30	0.40	0.30	0.30	
Capacity (c), v				393	561	541	432	561	502	453	561	462	546	561	462	
Volume-to-Capa		tio(X)		0.125	0.382	0.386	0.762	0.475		0.069	0.212	0.472	0.155	0.426	0.245	
		In (95 th percentile)		31.3	194.2	187.8	139	238.1	X . I . V	19.7	95.2	190.8	55.1	202.7	91.9	
		eh/ln (95 th percenti	_	1.2	7.6	7.5	5.5	9.4	8.9	0.8	3.7	7.5	2.2	8.0	3.6	
		RQ) (95 th percent	_	0.00	0.00	0.00	0.00	0.00	_	0.00	0.00	0.00	0.00	0.00	0.00	
Uniform Delay (· · · · · · · · · · · · · · · · · · ·		19.5	27.7	27.7	26.1	28.6	_	19.1	26.2	28.5	19.1	28.1	26.4	
Incremental De				0.1	2.0	2.1	7.0	2.9	3.3	0.0	0.1	0.3	0.0	0.2	0.1	
Initial Queue De	THE RESERVE AND ADDRESS OF THE PARTY OF THE	The same of the sa		0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	
Control Delay (19.6	29.6	29.8	33.1	31.4		19.1	26.2	28.8	19.2	28.3	26.5	
_evel of Service				В	С	С	С	С	С	В	С	C	В	С	С	
Approach Delay		/LOS		28.7		С	32.3	A received	С	27.2		C	26.1		С	
Intersection Del							.3				-		С			
Trans - Alle	LE FE	F. Burton	Wat 3	100	WE ST	E LAND	1 15	176	1/26	36.3	POT LA	FILE ST	DWS.	5000	1000	
Multimodal Results					EB			WB			NB		SB			
Pedestrian LOS	Score	LOS		2.15		В	2.13	3	В	2.30		В	2.29)	В	
Bicycle LOS Sc	ycle LOS Score / LOS					Α	1.18	3	Α	1.09	9	A	1.21		Α	

Connect lefe	41			E COL	LIGH.			300	1	A CONTRACTOR		31923	4	1.1.1.1.	9/23
General Inform	nation	lo-lusa te							Intersec			on	- 1	्रो ौ । १ व भ क	
Agency		Solaegui Engineers	5	1		10.			Duration	·	0.25				
Analyst		MSH				Jun 4			Area Type		Other				٠.
Jurisdiction		Carson City		Time F		_	eak Hou	THE CO. LANSING	PHF		0.90				
Urban Street						and the second	ng + Pro	-715	Analysis	Period	1> 7:	00			
Intersection		Saliman & Fairview		File Na	ame	SaFa	19aw.xu	ıs						ነተሰ	
Project Descrip	tion		200001	PT RISE			1777-7		1.3	1000	of Green			14144	te p
Demand Inform	nation	Sept.		-	EB	PERM	1400	WI	R	-	NB		200	SB	-1-1
Approach Move	C Total Control			L	T	R	L	T		L	T	R	L	T	ŧ R
Demand (v), v				40	172	5	75	26			241	-	120	93	87
Demana (v), v	CHIT		5-136	40	112	3	75	20	0 133	12	241	299	120	93	01
Signal Informa	tion			1	-			121		7					1
Cycle, s	100.0	Reference Phase	2	1	JB 4	=	Ħ			1			4	1	4
Offset, s	0	Reference Point	End	0	40.0	- 1	1400					1	¥ 2	.3	
Uncoordinated	No	Simult. Gap E/W	On	Green Yellow		30.0 4.0	10.0	30. 4.0	D. Francisco, British St. St. St.	0.0		7	}		-4
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	1.0	1.0		0.0		5	9	* 7	Y
STATE OF THE PARTY.	EINE	Vertical field	710	THE SHA		No Page							11331	THE .	100
Timer Results				EBL	-	EBT	WB	L	WBT	NB	L	NBT	SB	L	SBT
Assigned Phase	е			5		2	1		6	3	1	8	7		4
Case Number				1.1		4.0	1.1		4.0	1.1		3.0	1.1		3.0
Phase Duration	, s			15.0		35.0	15.0) [35.0	15.0		35.0			35.0
Change Period,	(Y+R	c), S		5.0		5.0	5.0	ermee dinne	5.0	5.0		5.0	5.0	_	5.0
Max Allow Head		TOTAL PRODUCTION ASSUMPTION OF THE PROPERTY OF		3.1		0.0	3.1		0.0	3.1		3.2	3.1		
Queue Clearan	ce Time	e (gs), s		3.5			4.9			2.5	3.00 (1.	18.9	6.9		6.1
Green Extensio	n Time	(ge),s		0.0		0.0	0.0		0.0	0.0	1.4		0.1		
Phase Call Prot	bability			1.00	1.00		1.00)		1.00)	1.00	1.00)	1.00
Max Out Probal	bility			0.00			0.06	6		0.00)	0.04	0.97	7	0.00
			18:3		S. C.	2.11		10				4.0		Marie .	7137
Movement Gro		sults			EB			WB			NB			SB	_
Approach Move				L	T	R	L	T	R	L	Т	R	L	T	R
Assigned Move				5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow F				44	99	98	83	225	203	13	268	299	133	103	86
		ow Rate (s), veh/h/l	n	1781	1870	1845	1781	1870	-	1781	1870	1539	1781	1870	1539
Queue Service			_	1,5	3.9	3.9	2.9	9.6	10.1	0.5	11.7	16.9	4.9	4.1	4.1
Cycle Queue Cl		e nme (<i>g c</i>), s		1.5	3.9	3.9	2.9	9.6	10.1	0.5	11.7	16.9	4.9	4.1	4.1
Green Ratio (g.				0.40	0.30	0.30	0.40	0.30	talian acres	0.40	0.30	0.30	0.40	0.30	0.30
Capacity(c), v Volume-to-Capa		tio (V)		422	561	554	536	561	485	559	561	462	431	561	462
Contract the contract of the c	ومعتصف وور بشكامه بشناه	/In (95 th percentile)		0.105	W. Seeding	0.177	0.156	0.402		0.024	0.477	0.647	0.309	0.184	0.185
		eh/In (95 th percentile)		28.4	82.5	81	54.3	203.2		8.3	225	266.9	89.9	82	68
		RQ) (95 th percent		0.00	0.00	3.2	0.00	0.00	7.5	0.3	8.9	10.5	3.5	3.2	2.7
Uniform Delay (ne)	19.2	25.9	0.00	19.1	27.9	-	0.00	0.00	0.00	20.5	0.00 25.9	0.00 25.9
Incremental Del	And the second second			0.0	0.7	0.7	0.0	2.1	2.7	0.0	0,2	2.5	0.1	0.1	0.1
nitial Queue De				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (19.3	26.5	26.6	19.1	30.0		18.3	28.8	32.9	20.7	26.0	26.0
evel of Service	_			В	C	C	B	C C	C	В	C C	C	C C	C C	26.0 C
Approach Delay	The second secon			25.2		C	28.5	-	C	30.7	-	C	23.8	time grants	C
ntersection Del				20.2			7.9		J	30,7			C 23.6		0
	A 152	DE VISITING IN	2119	C 1000	Call Co			Yala	10000	100	Section 18	50.50		10.840	SE 197
The State of the S	culte			-	EB			WB	153 510	The state of the s	NB			SB	No. of Lot
Multimodal Res	2.16 EB							I Wast							
Multimodal Res Pedestrian LOS	/	strian LOS Score / LOS de LOS Score / LOS					2.13	3	В	2.31		В	2.29		В

HCS7 Signalized Intersection Results Summary Januaria. General Information Intersection Information Agency Solaequi Engineers Duration, h 0.25 Analyst MSH Analysis Date Jun 4, 2019 Area Type Other PM Peak Hour Jurisdiction Carson City Time Period PHF 0.90 Urban Street Analysis Year Existing + Project Analysis Period 1> 7:00 Saliman & Fairview Intersection File Name SaFa19pw.xus Project Description Demand Information EB WB NB SB Approach Movement L Т R L T R L T R L T R Demand (v), veh/h 53 352 29 296 353 131 28 112 221 84 218 117 Signal Information JI. Cycle, s 100.0 Reference Phase 2 0 Offset, s Reference Point End Green 10.0 30.0 0.0 0.0 10.0 30.0 Uncoordinated No Simult, Gap E/W On Yellow 4.0 4.0 4.0 4.0 0.0 0.0 Force Mode Fixed Simult, Gap N/S On Red 1.0 1.0 1.0 1.0 0.0 0.0 **Timer Results** EBL EBT WBL WBT NBL NBT SBL SBT Assigned Phase 5 2 1 6 3 8 7 4 Case Number 1.1 4.0 1.1 4.0 1.1 3.0 1.1 3.0 Phase Duration, s 15.0 35.0 15.0 35.0 15.0 35.0 15.0 35.0 5.0 Change Period, (Y+R €), s 5.0 5.0 5.0 5.0 5.0 5.0 5.0 Max Allow Headway (MAH), s 3.1 0.0 3.1 0.0 3.1 3.2 3.1 3.2 Queue Clearance Time (gs), s 4.1 12.0 3.1 13.5 5.3 12.4 Green Extension Time (g_e) , s 0.0 0.0 0.0 0.0 0.0 0.0 1.4 1.4 1.00 Phase Call Probability 1,00 1.00 1.00 1.00 1,00 0.01 1.00 0.00 0.12 0.00 Max Out Probability 0.00 Movement Group Results EB WB NB SB Approach Movement R L T R L T L T R L T R Assigned Movement 5 2 6 16 8 4 12 1 3 18 7 14 Adjusted Flow Rate (v), veh/h 59 251 214 209 329 276 31 124 218 93 242 119 Adjusted Saturation Flow Rate (s), veh/h/ln 1781 1870 1804 1781 1870 1657 1781 1870 1539 1781 1870 1539 Queue Service Time (g_s) , s 2.1 9.1 9.2 10.0 12.1 12.5 1.1 5.0 11.5 3.3 10.4 5.9 Cycle Queue Clearance Time (g c), s 2.1 9.1 9.2 10.0 12.1 12.5 1.1 5.0 11.5 3.3 10.4 5.9 Green Ratio (g/C) 0.40 0.30 0.30 0.40 0.30 0.30 0.40 0.30 0.30 0.40 0.30 0.30 Capacity (c), veh/h 386 561 541 432 561 497 450 561 462 561 462 542 Volume-to-Capacity Ratio (X) 0.152 0.382 0.762 0.222 0.386 0.492 0.504 0.069 0.472 0.172 0.432 0.258 Back of Queue (Q), ft/ln (95 th percentile) 37.9 194.2 187.8 246.3 227.5 139 19.7 99.9 190.8 61.2 205.2 96.8 Back of Queue (Q), veh/ln (95 th percentile) 1.5 7.6 7.5 5.5 9.7 9.1 0.8 3.9 7.5 2.4 8.1 3.8 0.00 Queue Storage Ratio (RQ) (95 th percentile) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Uniform Delay (d 1), s/veh 19.7 27.7 27.7 26.1 28.7 28.9 19.1 26.2 28.5 19.3 28.1 26.6 Incremental Delay (d 2), s/veh 0.1 2.0 2.1 7.0 3.1 3.6 0.0 0.1 0.3 0.1 0.2 0.1 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 19.8 29.6 29.8 33.1 31.8 32.5 19.1 26.3 28.8 19.3 28.3 26.7 Level of Service (LOS) B C C C C B C C B C C Approach Delay, s/veh / LOS 28.5 C 32.5 C 27.2 C 26.0 C Intersection Delay, s/veh / LOS 29.3 C

Multimodal Results

Pedestrian LOS Score / LOS

Bicycle LOS Score / LOS

2.13

WB

B

A

EB

B

A

2.15

0.89

2.29

SB

В

A

214

NB

В

A

2:30

1.10

		HCS	7 Sig	ınalize	d Int	ersec	tion F	Resu	lts Su	mmar	у				
		的是一种体 一种							317 Als		21/21				
General Inform	nation								Intersec	tion Inf	ormati	on		را طه ولو له او	is in
Agency		Solaegui Engineers	8						Duration	ı, h	0.25		10 明		
Analyst		MSH		Analys	sis Date	Jun 4	2019		Area Type		Other		A		
Jurisdiction		Carson City		Time F	Period	AM P	eak Hou	ır	PHF		0.90				
Urban Street				Analys	sis Year	s Year 2040			Analysis	Period	1> 7:	00			
Intersection		Saliman & Fairview		File Na	ame	SaFa	40ax.xu	s					11. 10.20	5 t ሰ	
Project Descrip	tion													ነፋነቀን	1.0
NICE SERVICE	4600		F. II. W	Transfer of	DARKEN.			No.			STATE OF	FINA.		HAMP!	
Demand Inforr				-	EB			WE			NB	-		SB	
Approach Move				L	T	R	L	Т		L	T	R	L	T	R
Demand (v), v		December 1 May 1 may 1	and reside	40	520	30	110	600	0 140	60	260	310	110	130	90
Signal Informa			REAL PROPERTY.	All Sales			Reserved to	1 112			E 1 E 1 E 1 E 1		270877810		are production
Cycle, s	100.0	Reference Phase	2		20	4.2	7	1			-4	_	X	1	小
Offset, s	0	Reference Point	End	-		Ħ.	5	15	17			1	7 2	3	4
Uncoordinated	No	Simult, Gap E/W	On	Green		30.0	10.0	30.		0.0			_	1	
Force Mode	Fixed	Simult. Gap N/S	On	Yellow Red	1.0	4.0 1.0	4.0 1.0	4.0		0.0			Y	1	Ψ
Force Mode	LIXEG	Simult. Gap 1975	On	red	[1.0	11.0	11.0	(1.0	10.0	10.0			5	1	10
Fimer Results	1200000	EMANUS INVASOR RESERVE		EBL	(E) (E) (V)	EBT	WB	1	WBT	NBI	Maria Pa	NBT	SB		SBT
Assigned Phase						2	1		6	3		8	7		4
Case Number				5 1.1	-	4.0	1.1	-	4.0	1.1	+	3.0	1,1		3.0
Phase Duration	5			15.0		35,0	15.0		35.0	15,0	_	35.0	15.0		35.0
Change Period,	-	a \ e		5.0		5,0	5,0		5.0	-		5.0			5.0
Max Allow Head				3.1		0.0	3.1		0.0	5.0		3.2	3.1		
Queue Clearan				3.5		0.0	6.4		0.0	3,1					3.2
Green Extensio				0.0	-	0.0	0.1		0.0	4,3 0.0		19.7	6.4		7.9
Phase Call Prot		(90), 8		1.00		0.0	_		0.0	1,00		1.5	0,1		1.7
Max Out Probat				0.00			1.00 0.57				.00 1.00		1.00		1.00
Wax Out / Tobal	onity	Residence in the second	OM N	0.00		2000	0.5		G (3) 10 (3)	0,02		0.07	0,5	enterme	0.00
Movement Gro	up Res				EB			WB			NB		- Company	SB	
Approach Move	ment			L	Т	R	L	T	R	L	T	R	L	T	R
Assigned Move				5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow F), veh/h		44	309	302	122	419	387	67	289	311	122	144	89
		ow Rate (s), veh/h/h	n	1781	1870	1822	1781	1870		1781	1870	1539	1781	1870	1539
Queue Service				1.5	13.9	13.9	4.4	20.2		2,3	12.8	17,7	4.4	5.9	4,3
Cycle Queue CI				1,5	13.9	13,9	4.4	20,2		2.3	12,8	17.7	4.4	5.9	4.3
Green Ratio (g		11110 (30)10		0.40	0.30	0.30	0.40	0.30	0,30	0,40	0.30	0.30	0.40	0,30	0,30
Capacity (c), v				302	561	547	364	561	517	526	561	462	416	561	462
Volume-to-Capa		tio (X)		0.147	0.551	0.553	0.336	0.747	_	0.127	0.515	0.674	0,294	0.257	0.193
		In (95 th percentile)		28.5	276.1	267.5	82	391.4		43	242	280.2	81.8	117.5	70.9
The second secon		eh/In (95 th percenti		1.1	10.9	10.7	3.2	15,4	14,6	1.7	9.5	11.0	3.2	4.6	2.8
	100	RQ) (95 th percent		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Jniform Delay (21.1	29.3	29.4	20,8	31.6	31.6	19.0	29.0	30.7	20.6	26.6	26.0
ncremental Del				0,1	3.9	4.0	0.2	8.8	9.6	0,0	0.4	3.2	0,1	0.1	0.1
nitial Queue De				0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0
Control Delay (21.2	33,2	33.4	21.0	40.4	41,2	19,1	29.3	33.9	20.7	26,6	26.1
evel of Service				C C	C C	C	C C	D D	D D	B	C C	C	C C	20,0 C	20.1
Approach Delay		/LOS		32.5	the same	C	38.1		D	30,4	_	C	24.5		C
ntersection Del				52.5			.9			30,4			24.0 C	,	-
			1376	No.		NA PAR	PARRET	GIE TU	THE P		No.	To the second	(A) A AND		
Multimodal Res	The second secon				EB			WB			NB		SB		- 2
Pedestrian LOS	Score .	LOS		2.16	-	В	2.13	-	В	2.31				2.29 B	
	cle LOS Score / LOS														

STATE OF THE PARTY OF		HCS	7 Sig	nalize	d Inte	ersec	tion R	tesul	ts Sur	nmar	y	990		COLUMN 1		
General Inform	ation		3.22						ntersec	tion Infe	ormatic	n	1 1	4 4 4 1	6 W.	
Agency	iacioni	Solaegui Engineers							Duration		0.25			111		
Analyst		MSH		Analys	is Date	Jun 4	2019		Area Typ	_	Other					
Jurisdiction		Carson City		Time F			eak Hour		PHF		0.90			2 单		
Urban Street		DE CONTON		Analysis Year		-			Analysis	Period	1> 7:0	10				
Intersection		Saliman & Fairview	,	File Na			10px.xu			-	1		7 20	5+6		
Project Descript	tion			1.110		00.10							-	4 144	p. 17	
r roject Beschip		100 miles	100	20090	SISS	ESI (M	170	1500		10 50	Mary St.	135.13	1	-		
Demand Inform	nation				EB			WB			NB.			SB		
Approach Move	ment			L	T	R	L	T	R	L	T	R	L	T	R	
Demand (v), v	eh/h			80	530	90	300	620	120	70	180	230	130	260	120	
	100		7-21-	15/2	56-	1	NAME OF	300		15.75		393				
Signal Informa	tion				1.0	. 5		LUS.					_	R	*	
Cycle, s	100.0	Reference Phase	2	1	1 6	\Rightarrow	K,	IF.	178	- 1.	×		0	1	ct.	
Offset, s	0	Reference Point	End	Green	10.0	30.0	10.0	30.0	Market and the second	0.0			K			
Uncoordinated	No	Simult. Gap E/W	On	Yellow	4.0	4.0	4.0	4.0	0.0	0.0		7	7	1	V	
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	1.0	1.0	0.0	0.0		5	6	7	0	
		and the same of the									DE N	-		- 10	350	
Timer Results				EBL		EBT	WB	L	WBT	NBI	-	NBT	SBL	-	SBT	
Assigned Phase	9			.5 1,1		2	1		6	3	-	8	7		4	
Case Number						4.0	1,1		4.0	1.1		3.0	1.1	_	3.0	
Phase Duration				15.0	-	35.0	15.0		35.0	15.0		35.0	15.0		35.0	
Change Period,						5.0	-	5.0 5.0		5.0		5.0	5.0			
Max Allow Head						0.0	3.1		0.0	3.1	-	3.2	3.1			
Queue Clearan				5.2			12.0	_		4.7	14.2		7.3	_	14,8	
Green Extensio		(ge), s				0.0	0.0	_	0.0	0.0	1.6		0,1		1.6	
Phase Call Prot				1.00			1.00	\rightarrow		1.00	_	1.00	1.00		1.00	
Max Out Probal	bility		-	0.09			1.00)	-	0.04		0.01	1.00		0.01	
Movement Gro	un Res	sults		No.	EB			WB	-	No. of Street, or other Persons	NB		-	SB		
Approach Move				L	T	R	L	Т	R	L	Т	R	L	T	R	
Assigned Move				5	2	12	1	6	16	3	8	18	7	4	14	
Adjusted Flow F				-	355	333	333		391	78	200	228	144	289	122	
CAGINGEON I JUST 1		'), veh/h		89	000	000	333	420		10	200		177			
		r), veh/h ow Rate (s), veh/h/	ln	89 1781		1745	0	420 1870	1740	1781	1870	1539	1781	1870	1539	
Adjusted Satura	ation Fk	ow Rate (s), veh/h/	ln	1781	1870	1745	1781	1870	1740	1781	-	-	1781	1870	1539	
Adjusted Satura Queue Service	ation Fk Time (;	ow Rate (s), veh/h/ g s), s	ln	1781 3.2			0	1870 20.3			1870	1539 12.2 12.2	-		_	
Adjusted Satura Queue Service Cycle Queue Cl	ation Flo Time (; learanc	ow Rate (s), veh/h/ g s), s	ln	1781	1870 16.4	1745 16.5	1781 10.0	1870	1740 20.3	1781 2.7	1870 8.4	12.2	1781 5.3	1870 12.8	1539 6.0	
Adjusted Satura Queue Service Cycle Queue C Green Ratio (<i>g</i>	ation Fix Time (; learance /C)	ow Rate (s), veh/h/ g s), s	In	1781 3.2 3.2	1870 16.4 16.4	1745 16.5 16.5	1781 10.0 10.0	1870 20.3 20.3	1740 20.3 20.3	1781 2.7 2.7	1870 8.4 8.4	12.2 12.2	1781 5.3 5.3	1870 12.8 12.8	1539 6.0 6.0	
Adjusted Satura Queue Service Cycle Queue Cl Green Ratio (<i>g</i> Capacity (c), v	ation Flo Time (; learanc /C) reh/h	ow Rate (s), veh/h/ g s), s e Time (g c), s	ln .	1781 3.2 3.2 0.40	1870 16.4 16.4 0.30	1745 16.5 16.5 0.30	1781 10.0 10.0 0.40	1870 20.3 20.3 0.30	1740 20.3 20.3 0.30 522	1781 2.7 2.7 0.40	1870 8.4 8.4 0.30	12.2 12.2 0.30	1781 5.3 5.3 0.40	1870 12.8 12.8 0.30	1539 6.0 6.0 0.30 462	
Adjusted Satura Queue Service Cycle Queue Cl Green Ratio (g Capacity (c), v Volume-to-Capa	ation Flo Time (; learance /C) reh/h acity Ra	ow Rate (s), veh/h/ g s), s e Time (g c), s		3.2 3.2 0.40 302	1870 16.4 16.4 0.30 561	1745 16.5 16.5 0.30 523	1781 10.0 10.0 0.40 337	1870 20.3 20.3 0.30 561	1740 20.3 20.3 0.30 522 0.750	1781 2.7 2.7 0.40 416	1870 8.4 8.4 0.30 561	12.2 12.2 0.30 462	1781 5.3 5.3 0.40 482	1870 12.8 12.8 0.30 561	1539 6.0 6.0 0.30 462	
Adjusted Satura Queue Service Cycle Queue C Green Ratio (g Capacity (c), v Volume-to-Capa Back of Queue	ation Flo Time (; learance /C) reh/h acity Ra (Q), ft	ow Rate (s), veh/h/gs), s e Time (gc), s atio (X))	3.2 3.2 0.40 302 0.294	1870 16.4 16.4 0.30 561 0.633	1745 16.5 16.5 0.30 523 0.637	1781 10.0 10.0 0.40 337 0,991	1870 20.3 20.3 0.30 561 0.748	1740 20.3 20.3 0.30 522 0.750	1781 2.7 2.7 0.40 416 0.187	1870 8.4 8.4 0.30 561 0.356	12.2 12.2 0.30 462 0.493	1781 5.3 5.3 0.40 482 0.300	1870 12.8 12.8 0.30 561 0.515	1539 6.0 6.0 0.30 462 0.265	
Adjusted Satura Queue Service Cycle Queue Cl Green Ratio (g. Capacity (c), v Volume-to-Capa Back of Queue Back of Queue	ation Flo Time (; learance /C) reh/h acity Ra (Q), ft (Q), v	ow Rate (s), veh/h/gs), s e Time (gc), s atio (X) /In (95 th percentile) ile)	1781 3.2 3.2 0.40 302 0.294 58.6	1870 16.4 16.4 0.30 561 0.633 320.8	1745 16.5 16.5 0.30 523 0.637 302.1	1781 10.0 10.0 0.40 337 0.991 308	1870 20.3 20.3 0.30 561 0.748 392.7	1740 20.3 20.3 0.30 522 0.750 367.6	1781 2.7 2.7 0.40 416 0.187 50.7	1870 8.4 8.4 0.30 561 0.356 168.1	12.2 12.2 0.30 462 0.493 199.3	1781 5.3 5.3 0.40 482 0.300 97.8	1870 12.8 12.8 0.30 561 0.515 242	1539 6.0 6.0 0.30 462 0.265 99.7	
Adjusted Satura Queue Service Cycle Queue Cl Green Ratio (g Capacity (c), v Volume-to-Capa Back of Queue Back of Queue Queue Storage	ation Fix Time (learance /C) reh/h acity Ra (Q), ft (Q), v Ratio (ow Rate (s), veh/h/ g s), s e Time (g c), s atio (X) /In (95 th percentile eh/In (95 th percent) ile)	1781 3.2 3.2 0.40 302 0.294 58.6 2.3	1870 16.4 16.4 0.30 561 0.633 320.8 12.6	1745 16.5 16.5 0.30 523 0.637 302.1 12.1	1781 10.0 10.0 0.40 337 0.991 308 12.1	1870 20.3 20.3 0.30 561 0.748 392.7 15.5	1740 20.3 20.3 0.30 522 0.750 367.6 14.7	1781 2.7 2.7 0.40 416 0.187 50.7 2.0	1870 8.4 8.4 0.30 561 0.356 168.1 6.6	12.2 12.2 0.30 462 0.493 199.3 7.8	1781 5.3 5.3 0.40 482 0.300 97.8 3.9	1870 12.8 12.8 0.30 561 0.515 242 9.5	1539 6.0 6.0 0.30 462 0.265 99.7 3.9	
Adjusted Satura Queue Service Cycle Queue C Green Ratio (g Capacity (c), v Volume-to-Capa Back of Queue Back of Queue Queue Storage Uniform Delay (ation Fix Time (; learance /C) reh/h acity Ra (Q), ft (Q), v Ratio ((d 1), s	bow Rate (s), veh/h/ gs), s The Time (gs), s That is (X) In (95 th percentile eh/ln (95 th percent RQ) (95 th percentile eh/ln)) ile)	1781 3.2 3.2 0.40 302 0.294 58.6 2.3 0.00	1870 16.4 16.4 0.30 561 0.633 320.8 12.6 0.00	1745 16.5 16.5 0.30 523 0.637 302.1 12.1 0.00	1781 10.0 10.0 0.40 337 0.991 308 12.1 0.00	1870 20.3 20.3 0.30 561 0.748 392.7 15.5 0.00	1740 20.3 20.3 0.30 522 0.750 367.6 14.7 0.00	1781 2.7 2.7 0.40 416 0.187 50.7 2.0 0.00	8.4 8.4 0.30 561 0.356 168.1 6.6 0.00	12.2 12.2 0.30 462 0.493 199.3 7.8 0.00	1781 5.3 5.3 0.40 482 0.300 97.8 3.9 0.00	1870 12.8 12.8 0.30 561 0.515 242 9.5 0.00	1539 6.0 6.0 0.30 462 0.265 99.7 3.9	
Adjusted Satura Queue Service Cycle Queue Cl Green Ratio (g. Capacity (c), v Volume-to-Capa Back of Queue Back of Queue Queue Storage Uniform Delay (Incremental De	ation Fix Time (; learance /C) reh/h acity Ra (Q), ft (Q), v Ratio (d t), s lay (d a	ow Rate (s), veh/h/ gs), s Time (gc), s atio (X) In (95 th percentile eh/ln (95 th percent RQ) (95 th percentiveh s), s /veh) ile)	1781 3.2 3.2 0.40 302 0.294 58.6 2.3 0.00 21.8	1870 16.4 16.4 0.30 561 0.633 320.8 12.6 0.00 30.2	1745 16.5 16.5 0.30 523 0.637 302.1 12.1 0.00 30.3	1781 10.0 10.0 0.40 337 0.991 308 12.1 0.00 29.8	1870 20.3 20.3 0.30 561 0.748 392.7 15.5 0.00 31.6	1740 20.3 20.3 0.30 522 0.750 367.6 14.7 0.00 31.6	1781 2.7 2.7 0.40 416 0.187 50.7 2.0 0.00 20.0	1870 8.4 8.4 0.30 561 0.356 168.1 6.6 0.00 27.4	12.2 12.2 0.30 462 0.493 199.3 7.8 0.00 28.8	1781 5.3 5.3 0.40 482 0.300 97.8 3.9 0.00 20.2	1870 12.8 12.8 0.30 561 0.515 242 9.5 0.00 29.0	1539 6.0 6.0 0.30 462 0.265 99.7 3.9 0.00 26.6	
Adjusted Satura Queue Service Cycle Queue Cl Green Ratio (g. Capacity (c), v Volume-to-Capa Back of Queue Back of Queue Queue Storage Uniform Delay (Incremental Del Initial Queue De	ation Fix Time (; learance /C) reh/h acity Ra (Q), ft (Q), v Ratio ((Q), v acity (d a elay (d a	ow Rate (s), veh/h/ g s), s the Time (g c), s atio (X) In (95 th percentile the set of the the) ile)	1781 3.2 3.2 0.40 302 0.294 58.6 2.3 0.00 21.8 0.2	1870 16.4 16.4 0.30 561 0.633 320.8 12.6 0.00 30.2 5.4	1745 16.5 16.5 0.30 523 0.637 302.1 12.1 0.00 30.3 5.8	1781 10.0 10.0 0.40 337 0.991 308 12.1 0.00 29.8 46.3	1870 20.3 20.3 0.30 561 0.748 392.7 15.5 0.00 31.6 8.8	1740 20.3 20.3 0.30 522 0.750 367.6 14.7 0.00 31.6 9.5	1781 2.7 2.7 0.40 416 0.187 50.7 2.0 0.00 20.0 0.1	1870 8.4 8.4 0.30 561 0.356 168.1 6.6 0.00 27.4 0.1	12.2 12.2 0.30 462 0.493 199.3 7.8 0.00 28.8 0.3	1781 5.3 5.3 0.40 482 0.300 97.8 3.9 0.00 20.2 0.1	1870 12.8 12.8 0.30 561 0.515 242 9.5 0.00 29.0 0.4	1539 6.0 6.0 0.30 462 0.265 99.7 3.9 0.00 26.6 0.1	
Adjusted Satura Queue Service Cycle Queue Cl Green Ratio (g Capacity (c), v Volume-to-Capa Back of Queue Back of Queue Queue Storage Uniform Delay (Incremental Del Initial Queue Del Control Delay (ation Fix Time (; learance /C) reh/h acity Ra (Q), ft (Q), v Ratio (d 1), s lay (d a elay (d d), s/v	ow Rate (s), veh/h/ g s), s e Time (g c), s atio (X) /In (95 th percentile eh/In (95 th percent RQ) (95 th percen i/veh e), s/veh eh) ile)	1781 3.2 3.2 0.40 302 0.294 58.6 2.3 0.00 21.8 0.2	1870 16.4 16.4 0.30 561 0.633 320.8 12.6 0.00 30.2 5.4 0.0	1745 16.5 16.5 0.30 523 0.637 302.1 12.1 0.00 30.3 5.8 0.0	1781 10.0 10.0 0.40 337 0.991 308 12.1 0.00 29.8 46.3 0.0	1870 20.3 20.3 0.30 561 0.748 392.7 15.5 0.00 31.6 8.8 0.0	1740 20.3 20.3 0.30 522 0.750 367.6 14.7 0.00 31.6 9.5 0.0	1781 2.7 2.7 0.40 416 0.187 50.7 2.0 0.00 20.0 0.1 0.0	1870 8.4 8.4 0.30 561 0.356 168.1 6.6 0.00 27.4 0.1	12.2 12.2 0.30 462 0.493 199.3 7.8 0.00 28.8 0.3 0.0	1781 5.3 5.3 0.40 482 0.300 97.8 3.9 0.00 20.2 0.1 0.0	1870 12.8 12.8 0.30 561 0.515 242 9.5 0.00 29.0 0.4 0.0	1539 6.0 6.0 0.30 462 0.265 99.7 3.9 0.00 26.6 0.1	
Adjusted Satura Queue Service Cycle Queue Cl Green Ratio (g. Capacity (c), v Volume-to-Capa Back of Queue Back of Queue Queue Storage Uniform Delay (Incremental Del Initial Queue De Control Delay (Level of Service	ation Fix Time (; learance /C) reh/h acity Ra (Q), ft (Q), v Ratio ((d 1), s lay (d a elay (d d), s/v e (LOS)	ow Rate (s), veh/h/gs), s e Time (gc), s etio (X) /In (95 th percentile eh/In (95 th percent RQ) (95 th percent //veh e), s/veh eh) ile)	1781 3.2 3.2 0.40 302 0.294 58.6 2.3 0.00 21.8 0.2 0.0	1870 16.4 16.4 0.30 561 0.633 320.8 12.6 0.00 30.2 5.4 0.0 35.6 D	1745 16.5 16.5 0.30 523 0.637 302.1 12.1 0.00 30.3 5.8 0.0 36.1	1781 10.0 10.0 0.40 337 0.991 308 12.1 0.00 29.8 46.3 0.0 76.1	1870 20.3 20.3 0.30 561 0.748 392.7 15.5 0.00 31.6 8.8 0.0 40.4	1740 20.3 20.3 0.30 522 0.750 367.6 14.7 0.00 31.6 9.5 0.0 41.1	1781 2.7 2.7 0.40 416 0.187 50.7 2.0 0.00 20.0 0.1 0.0 20.1	1870 8.4 8.4 0.30 561 0.356 168.1 6.6 0.00 27.4 0.1 0.0 27.6 C	12.2 12.2 0.30 462 0.493 199.3 7.8 0.00 28.8 0.3 0.0 29.1	1781 5.3 5.3 0.40 482 0.300 97.8 3.9 0.00 20.2 0.1 0.0 20.3	1870 12.8 12.8 0.30 561 0.515 242 9.5 0.00 29.0 0.4 0.0 29.3 C	1539 6.0 6.0 0.30 462 0.265 99.7 3.9 0.00 26.6 0.1 0.0	
Adjusted Satura Queue Service Cycle Queue Cl Green Ratio (g) Capacity (c), v Volume-to-Capa Back of Queue Back of Queue Queue Storage Uniform Delay (Incremental Del Initial Queue Del Control Delay (Level of Service Approach Delay	ation Fix Time (; learance /C) reh/h acity Ra (Q), ft (Q), v Ratio (d 1), s lay (d 2 elay (d d), s/v e (LOS) y, s/veh	ow Rate (s), veh/h/gs), s the Time (gc), s atio (X) In (95 th percentile eh/ln (95 th percentile RQ) (95 th percentile late), s/veh 3), s/veh t LOS) ile)	1781 3.2 3.2 0.40 302 0.294 58.6 2.3 0.00 21.8 0.2 0.0 22.0	1870 16.4 16.4 0.30 561 0.633 320.8 12.6 0.00 30.2 5.4 0.0 35.6 D	1745 16.5 16.5 0.30 523 0.637 302.1 12.1 0.00 30.3 5.8 0.0 36.1 D	1781 10.0 10.0 0.40 337 0.991 308 12.1 0.00 29.8 46.3 0.0 76.1 E	1870 20.3 20.3 0.30 561 0.748 392.7 15.5 0.00 31.6 8.8 0.0 40.4	1740 20.3 20.3 0.30 522 0.750 367.6 14.7 0.00 31.6 9.5 0.0 41.1 D	1781 2.7 2.7 0.40 416 0.187 50.7 2.0 0.00 20.0 0.1 0.0 20.1 C	1870 8.4 8.4 0.30 561 0.356 168.1 6.6 0.00 27.4 0.1 0.0 27.6 C	12.2 12.2 0.30 462 0.493 199.3 7.8 0.00 28.8 0.3 0.0 29.1 C	1781 5.3 5.3 0.40 482 0.300 97.8 3.9 0.00 20.2 0.1 0.0 20.3 C	1870 12.8 12.8 0.30 561 0.515 242 9.5 0.00 29.0 0.4 0.0 29.3 C	1539 6.0 6.0 0.30 462 0.265 99.7 3.9 0.00 26.6 0.1 0.0 26.7 C	
Adjusted Satura Queue Service Cycle Queue Cl Green Ratio (g Capacity (c), v Volume-to-Capa Back of Queue Back of Queue Queue Storage Uniform Delay (Incremental De Initial Queue De Control Delay (Level of Service Approach Delay Intersection Delay	tion Fix Time (; learance /C) reh/h acity Ra (Q), ft (Q), ve Ratio (d1), s lay (d2 elay (dd), s/ve elay, s/veh lay, s/veh	ow Rate (s), veh/h/gs), s the Time (gc), s atio (X) In (95 th percentile eh/ln (95 th percentile RQ) (95 th percentile late), s/veh 3), s/veh t LOS) ile)	1781 3.2 3.2 0.40 302 0.294 58.6 2.3 0.00 21.8 0.2 0.0 22.0	1870 16.4 16.4 0.30 561 0.633 320.8 12.6 0.00 30.2 5.4 0.0 35.6 D	1745 16.5 16.5 0.30 523 0.637 302.1 12.1 0.00 30.3 5.8 0.0 36.1 D	1781 10.0 0.40 337 0.991 308 12.1 0.00 29.8 46.3 0.0 76.1 E	1870 20.3 20.3 0.30 561 0.748 392.7 15.5 0.00 31.6 8.8 0.0 40.4 D	1740 20.3 20.3 0.30 522 0.750 367.6 14.7 0.00 31.6 9.5 0.0 41.1 D	1781 2.7 2.7 0.40 416 0.187 50.7 2.0 0.00 20.0 0.1 0.0 20.1 C	1870 8.4 8.4 0.30 561 0.356 168.1 6.6 0.00 27.4 0.1 0.0 27.6 C	12.2 12.2 0.30 462 0.493 199.3 7.8 0.00 28.8 0.3 0.0 29.1 C	1781 5.3 5.3 0.40 482 0.300 97.8 3.9 0.00 20.2 0.1 0.0 20.3 C	1870 12.8 12.8 0.30 561 0.515 242 9.5 0.00 29.0 0.4 0.0 29.3 C	1539 6.0 6.0 0.30 462 0.265 99.7 3.9 0.00 26.6 0.1 0.0 26.7 C	
Adjusted Satura Queue Service Cycle Queue Cl Green Ratio (g Capacity (c), v Volume-to-Capa Back of Queue Back of Queue	ation Fix Time (; learance /C) reh/h acity Ra (Q), ft (Q), v Ratio (d1), s lay (d2 elay (d3 d), s/ve (LOS) /, s/veh lay, s/ve suits	ow Rate (s), veh/h/gs), s e Time (gc), s etio (X) /In (95 th percentile eh/In (95 th percent //veh e), s/veh eh /LOS eh / LOS) ile)	1781 3.2 3.2 0.40 302 0.294 58.6 2.3 0.00 21.8 0.2 0.0 22.0 C	1870 16.4 16.4 0.30 561 0.633 320.8 12.6 0.00 30.2 5.4 0.0 35.6 D	1745 16.5 16.5 0.30 523 0.637 302.1 12.1 0.00 30.3 5.8 0.0 36.1 D	1781 10.0 0.40 337 0.991 308 12.1 0.00 29.8 46.3 0.0 76.1 E	1870 20.3 20.3 0.30 561 0.748 392.7 15.5 0.00 31.6 8.8 0.0 40.4 D	1740 20.3 20.3 0.30 522 0.750 367.6 14.7 0.00 31.6 9.5 0.0 41.1 D	1781 2.7 2.7 0.40 416 0.187 50.7 2.0 0.00 20.0 0.1 0.0 20.1 C	1870 8.4 8.4 0.30 561 0.356 168.1 6.6 0.00 27.4 0.1 0.0 27.6 C	12.2 12.2 0.30 462 0.493 199.3 7.8 0.00 28.8 0.3 0.0 29.1 C	1781 5.3 5.3 0.40 482 0.300 97.8 3.9 0.00 20.2 0.1 0.0 20.3 C	1870 12.8 12.8 0.30 561 0.515 242 9.5 0.00 29.0 0.4 0.0 29.3 C	1539 6.0 6.0 0.30 462 0.265 99.7 3.9 0.00 26.6 0.1 0.0 26.7	

San Bus		Residence of the	1000		1 (0) 5	7	2000	1	ntersect	ion Info	rmatio	0	- 2	والمعادلة	ck.	
General Information									Duration,							
Agency Solaegui Engineers				Tanakata Data I		True a	0040			_	0.25 Other		1 3			
Analyst		MSH		Analysis Date		-			Area Typ	8	0.90		# 1			
Jurisdiction		Carson City		Time P			ak Hour		PHF	madad .		0	3-			
Urban Street					Pro		0 Base + Analysis ect			Period 1> 7:00			intr			
Intersection		Saliman & Fairview		File Na	me	SaFa4	Oaw.xus	3					-	4 1 40 70 1	1	
Project Descrip	tion							_		-	_	_				
	W1.55	The second	150	The second			-	LAID	100	7000	NB	100		SB	_	
Demand Information				EB -	T	1	WE	R	L	T	Ιp	RLT				
Approach Move				L	T	R	L	T	_	60	261	310	123	134	R 98	
Demand (v), v	eh/h		THE REAL PROPERTY.	43	520	30	110	600	144	60	201	310	123	134	30	
01	No.		No.	THE	3000			THE	-	-	-			-	T	
Signal Informa		Deference Diago	7		20	3	7	J.J.			1		4	1	Φ.	
Cycle, s	100.0	Reference Phase	2	-		= 1	1		TE			1	Y 3	1		
Offset, s	0	Reference Point	End	Green		30.0	10.0	30.0		0.0	_		5		-4.	
Uncoordinated	No	Simult. Gap E/W	On	Yellow	and the same of	1.0	1.0	1.0	0.0	0.0		5		7	Y	
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	11.0	11.0	10.0	10.0		3		100	1961	
	100			EBL		EBT	WBI	7	WBT	NBI		NBT	SBL		SBT	
Timer Results	ner Results signed Phase			5			1	-	6	3	-	8	7		4	
	е				-	2	1.1			1.1		3.0	1.1		3.0	
Case Number				1.1	-	4.0		+	4.0	_	_	35.0	15.0		35.0	
Phase Duration				15.0	_	35.0	15.0	-	35.0	15.0		5.0	5.0		5.0	
	nge Period, (Y+R c), s Allow Headway (<i>MAH</i>), s			5.0	-	5.0	5.0	+	5.0	5.0	-	3.2	3.1	-	3.2	
	w Headway (<i>MAH</i>), s clearance Time (<i>g s</i>), s		3.1	-	0.0	3.1	+	0.0	3.1		19.7	7.0		8.1		
			3.7 0.0				6.4		4.3			0.1		1.8		
	Extension Time (ge), s				0.0	0.1		0.0	0.0			1.00		1.00		
Phase Call Pro			1.00				1.00			1.00					0.00	
Max Out Proba	bility		-	0.00		-	0.57	-	-	0.02		0.07	1.00	-	0.00	
	De	arithm	E de	STREET, SQUARE,	EB		-	WB			NB			SB		
Movement Group Results			L	T	R	L	T	R	1	T	R	L	T	R		
Approach Mov				5	2	12	1	6	16	3	8	18	7	4	14	
Assigned Move		. V carlette		48	309	302	122	422	388	67	290	311	137	149	98	
Adjusted Flow			ln.	1781	1870	1822	1781	1870		1781	1870	1539	1781	1870	1539	
Sold Williams		ow Rate (s), veh/h/	111	1.7	13.9	13.9	4.4	20.4		2.3	12.8	17.7	5.0	6.1	4.7	
Queue Service				1.7	13.9	13.9	4.4	20.4		2.3	12.8	17.7	5.0	6.1	4.7	
		ce Time (g $_{\mathfrak{c}}$), s		0.40	0.30	0.30	0.40	0.30		0.40	0.30	0.30	0.40	0.30	0.30	
Green Ratio (301	561	547	364	561	515	522	561	462	415	561	462	
Capacity (c),		atio (V)		0.159	0.551	0.553	9	0.75	-	0.128	0.517	0.674	0.329	0.265	0.21	
Volume-to-Cap			Y	30.7	276.1	267.5	-	395	-	43	242.8	280.2	92.4	121.3	78.4	
Back of Queue (Q), ft/ln (95 th percentile)					10.9	10.7	3.2	15.6		1.7	9.6	11.0	3.6	4.8	3.1	
Back of Queue (Q), veh/ln (95 th percentile)					0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	
Queue Storage Ratio (RQ) (95 th percentile)					29.3	29.4	20.8	31.6	-	19.0	29.0	30.7	20.8	26.6	26.2	
Uniform Delay (d 1), s/veh			21.2	3.9	4.0	0.2	9.0	_	0.0	0.4	3.2	0.2	0.1	0.1		
Incremental Delay (d 2), s/veh Initial Queue Delay (d 3), s/veh			0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0		
	21.3	33.2	33.4	21.0	40.6	_	19.1	29.4	33.9	20.9	26.7	26.2				
Control Delay				C	C	C	C	D	D	В	C	C	C	C	C	
Level of Service (LOS) Approach Delay, s/veh / LOS					C			D	-	30.4 C		24.5		C		
Intersection Del				32.4		-	2.9			30.	-		C			
intersection Di	ciay, S/V	GII7 LOG	1770	1	20 150	2005		2015	300	ACCE.	10.00	1-1-11	TI SO	LINE	10	
Multimodal R	esulte		- 14		EB			WE	3		NB			SB		
					6	В	2.13				2.31		2.29		В	
Pedestrian LOS Score / LOS Bicycle LOS Score / LOS					3	A	1.20		A	1.5		В	1.1	_	A	

		Partie De la Maria	MAN	E A EAS		1900	HELE		Its Su	AMILES.	VARIETY:	Jan Ste	TRAUE!		
General Inform	ation				-	of the latest and	-		Intersec	tion Inf	ormati	on		4 1.4-1	1-12
Agency Solaegui Engineers								_	Duration					JIL	鬘
Analyst MSH				Analysis Date		Jun 4	2019		Area Type			Other			
Jurisdiction Carson City						PM Peak Hour		PHF		0.90			wit.		
Urban Street						040 Base +		Analysis Period							
					10 1001	Projec			r in any one				7.84	5 t c	
Intersection Saliman & Fairview			File Na	ime	SaFa	40pw.xu	S						1144	2.7	
Project Descript	tion														
AL THE TOTAL DES	NO. TA		9-11		MESSE	100	TOTAL CONTRACTOR	SUSAN		THE RE	100	SERVICE I	SEE SEE	0.0	
Demand Information					EB			W		-	NB		-	SB	1 -
Approach Move				L	T	R	L	T		L 70	T	R	100	T	R
Demand (v), v	en/n	er schreibilite dezember		89	530	90	300	62	0 134	70	185	230	138	263	125
Signal Informa	tion		EI NIE		الخلد إن الأراد			121						alysiess	
Cycle, s	100,0	Reference Phase	2	1	7 2	2 8	27				1		A	1	A
Offset, s	0	Reference Point	End		10.5	1	1					1	¥ 2	3	
Uncoordinated	No	Simult, Gap E/W	On	Green Yellow	10.0	30.0	10.0	30.		0.0		7	A		-
Force Mode	Fixed	Simult, Gap N/S	On	Red	1.0	1.0	1.0	4.0 1.0		0.0		5	0	* 7	Y
	MATE AND ADDRESS OF THE PARTY O					164		ALC: N		331545	100	TE AND THE	No.		
imer Results				EBL	. [BT	WBI		WBT	NBI		NBT	SBI		SBT
Assigned Phase						2	1		6	3		8	7		4
Case Number				1.1		4.0	1.1		4.0	1.1		3.0	1.1		3.0
Phase Duration, s				15.0		5.0	15.0		35.0		35.0		15.0		35.0
Change Period, (Y+Rc), s				5.0		5.0	5.0		5.0		5.0		5.0		5.0
Max Allow Headway (MAH), s				3.1		0.0	3.1		0.0	3.1	3.2		3.1		3.2
Queue Clearance Time (g s), s				5.5			12.0			4.7		14,2		7.7	
Green Extension Time (g c), s				0.1		0.0	0.0		0.0	0.0		1.6	0.1		1.6
Phase Call Probability			1.00			1.00			1,00		1.00	1.00		1.00	
Max Out Probat	oility			0.16			1,00			0.04	0.04 0.01		1.00		0.01
	The Dan	ulto			FD	- 74		VAID	12 (107) 84	HURE	ND		324912	C.D.	- 125
Movement Group Results				-	EB			WB	4	-	NB	1 0		SB	
Approach Move				-	T	R		T	R			R	-	-	R
Assigned Move		V venh (h		5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow F				99	355	333	333	430	397	78	206	228	153	292	128
Adjusted Satura Queue Service		ow Rate (s), veh/h/l		1781 3.5	1870 16.4	1745 16.5	1781 10.0	1870	_	1781 2.7	1870 8.6	1539	1781 5.7	1870 13.0	1539 6,3
Cycle Queue Cl				3.5	16.4	16.5	10.0	20.9		2.7	8.6	12.2	5.7	13.0	6.3
Green Ratio (<i>g</i>		o mile (g :), s		0,40	0.30	0.30	0.40	0.30	-	0.40	0.30	0.30	0.40	0.30	0.30
Capacity (c), v			-	297	561	523	337	561	518	414	561	462	478	561	462
Volume-to-Capa		tio (X)		0.333		0.637	_	0.768		0.188	0.366	0,493	0.321	0.521	0.27
		In (95 th percentile)		65.6		302.1	308	404.8		50.7	173.4	199.3	104.5	244.7	104.
		eh/ln (95 th percenti		2.6	12.6	12.1	12.1	15,9		2.0	6.8	7.8	4.1	9.6	4.1
		RQ) (95 th percent		0.00	0.00	0.00	0.00	0.00		0,00	0.00	0.00	0.00	0.00	0.00
Uniform Delay (d :), s/veh					30,2	30,3	29.8	31.8		20.0	27,5	28.8	20.3	29.0	26.7
Incremental Delay (d 2), s/veh					5.4	5.8	46.3	9.6	10.4	0.1	0.1	0.3	0.1	0.4	0.1
Initial Queue Delay (d 3), s/veh					0.0	0.0	0.0	0.0	0.0	0.0	0,0	0.0	0.0	0.0	0.0
Control Delay (d), s/veh					35.6	36.1	76.1	41.4		20.1	27.7	29,1	20,5	29.4	26.8
Level of Service (LOS)					D	D	Е	D	D	С	С	С	С	С	С
Approach Delay, s/veh / LOS				34,2 C			51.7 D			27.1		26.5 C			
ntersection Del	ay, s/ve	h/LOS				38	3,2						D		
						1	BOOK			BITTER	Take.	1721/0			To the
Multimodal Res					EB			WB			NB			SB	
Pedestrian LOS	Score	LOS		2.15		В	2.13		В	2.30)	В	2.29		В
Bicycle LOS Sc	1.14		Α	1.44		Α	1.33	3	А	1.43	3	Α			

General Inform	nation							-	Inte	ersec	tion Inf	ormati	ОП	1	Jan Jan L	F.U	
Agency			-	-		ration		0.25	011	- 1	-411						
Agency Solaegui Engineers Analyst MSH				Analysis Date		lun 4			-			-	-				
Jurisdiction		Carson City				_	AM Peak Hour		Area Type PHF		0	Other 0.90			1		
Urban Street	_	Condon Only		_			Existing				Dorind	1> 7:	00	- - - - - -			
Intersection Saliman & 5th						ing Analysis 19ax.xus				renou	127	00	- 3		9.50		
Project Descrip	tion	Communication of the		I IIC IV	aille	oarı	Jak.ku	2.	_					-	111		
r roject Bescrip	THO IT	Water Street	Gi IS	31673				505			33125	1000		Carrier Street		to a	
Demand Information					EB	-	T	W	B	I SOM	7000	NB	L-SA	SB			
Approach Move	ement			LTR						R	L	T	LTR				
Demand (v), veh/h				52	170	52	163	-		65	92	221	R 23	65	132	46	
The Atlanta	1640	1 5 TO 16		100	1000		No.	200			100	THE REAL PROPERTY.	20		102	10	
Signal Informa	tion				15,		1213	T			\top					1	
Cycle, s	90.0	Reference Phase	2		3	R.	154						_	4	1	P	
Offset, s	0	Reference Point	End	Green	30.0	15.0	30.0	0.0	_	0.0	0.0		1	Y 2	3		
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		4.0	4.0	0.0		0.0	0.0					寸	
Force Mode	Fixed	Simult, Gap N/S	On	Red	1.0	1.0	1.0	0.0		0.0	0.0		E	-	T	_ \	
182 108	2000			-	100	200						-3	22	S . IL			
Timer Results				EBL		EBT	WBL		WBT		NBL		NBT	SB	L	SBT	
Assigned Phase	е					2			6		3	3		7		4	
Case Number				6.0		6.0			6.0		1.1		4.0		1.1 4.0		
Phase Duration, s					35,0				35.0		20.0		35.0 20.		20.0 35.0		
Change Period,	(Y+R	c), S		5.0		5.0			5.0		5.0		5.0 5.0		.0 5.0		
Max Allow Headway (MAH), s						3.3		3.3		3	3.1		3.1 3.1		1 3.1		
Queue Clearance Time (g s), s				23.9		23.9		19.1		.1	4.7		6.8 3.9		9 5.7		
Green Extension Time (g e), s					1.3			1.7		7	0.1		0.8 0.1		1 0.8		
Phase Call Probability						1.00		1.00		00	1.00)	1.00	1.0	0	1.00	
Max Out Probability				0.37			0,07		07	0.00		0.00 0.0		00.00			
				1	10 -0 -	188			-			160	-		100		
Movement Gro	•	Bults	-		EB			WB	-			NB		-	SB		
Approach Move			_	L	T	R	L	T	-	R	L	T	R	L	T	R	
Assigned Move		L (L		5	2	12	1	6	-	16	3	8	18	7	4	14	
Adjusted Flow F	_			58	126	121	181	399	-	-	102	137	134	72	101	97	
		ow Rate (s), veh/h/lr	1	982	1870	1697	1126	1801	_	-	1781	1870	1797	1781	1870	1663	
Queue Service				4.8	4.3	4.6	12.4	17.1	-	-	2.7	4.7	4.8	1.9	3.4	3.7	
		e Time (g_{c}), s	_	21.9 0.33	4.3	4.6	17.0	17.1	-	-	2.7	4.7	4.8	1.9	3.4	3.7	
Green Ratio (g/C)					0.33	0.33	0.33	0.33	1	_	0.50	0.33	0.33	0.50	0.33	0.33	
Capacity (c), v		E - 7375		221	623	566	398	600	-		697	623	599	662	623	554	
Volume-to-Capa Posts of Output				0.261	0.202	0.213	0.455	0.664	-		0.147	0.220	0.224	0.109	0.162	0.174	
	_	In (95 th percentile)	and the same of	52	84.2	79.6	147.8	298.3		_	46.7	91.9	90.4	32.4	66.5	64	
		eh/ln (95 th percentil	-	0.00	3.3	3.2	5.8	11.7	-		1.8	3.6	3.6	1.3	2.6	2.5	
Queue Storage Ratio (RQ) (95 th percentile)					0.00	0.00	0.00	0.00	\rightarrow		0.00	0.00	0.00	0.00	0.00	0.00	
Uniform Delay (d 1), s/veh				35.1	21.4	21.5	27.6	25.7	+	_	12.1	21.6	21.6	12.0	21.1	21.2	
Incremental Delay (d 2), s/veh				0.2	0.1	0.1	0.3	2.2	-		0.0	0.1	0.1	0.0	0.0	0.1	
Initial Queue Delay (d 3), s/veh					0.0	0.0	0.0	0.0	1	_	0.0	0.0	0,0	0.0	0.0	0.0	
Control Delay (d), s/veh					21.5	21.6	27.9 C	27.9	-		12.2	21.6	21.7	12.0	21.2	21.3	
Level of Service (LOS) Approach Delay, s/veh / LOS					DCC			С	1	-1	В	C	C	В	C	С	
				24.2		C	27.9		C		19.1		В	18.8	3	В	
Intersection Del	ay, s/ve	en / LOS		100	-	23	3.4	-	-		-			С			
Multimodal Re-	aulte	The second	-	-	ED	284	1000	LAID	1	3	20.0	NID		The same	0.5	-	
Multimodal Results					EB			WB			0.4.	NB	_	SB			
Pedestrian LOS Score / LOS Bicycle LOS Score / LOS				2.28 0.74		В	2,28		В		2.11		В	2.11		В	

HCS7 Signalized Intersection Results Summary

General Inforn	nation			-				-	Interse	ction Inf	ormati	on		المعالية ا	b le
Agency		Solaegui Engineers						-	Duratio		0.25			ं यत्।	
Analyst		MSH		Analy	sis Date	Jun 4	2019		Area Ty		Other	r	1		
Jurisdiction		Carson City		Time I		-	eak Hou		PHF	L.S.	0.90		*		
Urban Street				-	sis Year		-			s Period	1> 7:	00			
Intersection		Saliman & 5th		File N		-	9px.xus	_	11,01500	. 51,150	1		- 100		
Project Descrip	tion	Community 2 Comp		111011	ome	oui i	ори.иц						-	117	2.7
		The Date of the Land	7-3	100			PSOU	30.5	FO.		1			- 0	98
Demand Inform	nation				EB		T	WE	3	T	NB			SB	
Approach Move	ement			L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), v	eh/h			98	309	62	67	17	7 37	56	197	112	70	269	79
100 7 10	-	No. of St. of St.		100			1000	198		tell .	100		200	1000	329
Signal Informa	tion				. 5	51	1							_	1
Cycle, s	90.0	Reference Phase	2	1	100	R	59	2						1	STA.
Offset, s	0	Reference Point	End	Green	30.0	15.0	30.0	0.0	0.0	0.0	-		K	1	
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		4.0	4.0	0.0	0.0				-		st.
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	1.0	0.0	0.0			8	1	1	Y
	14.13	AUDENCE	100				TAIL	S. []	100		-	LEL			833
Timer Results				EBI		EBT	WB	L	WBT	NB	L	NBT	SB		SBT
Assigned Phase	е					2			6	3		8	7		4
Case Number						6.0			6.0	1.1		4.0	1.1		4.0
Phase Duration	, s					35.0			35.0	20.0		35.0	20.0)	35.0
Change Period	(Y+R	c), s		-		5.0			5.0	5.0		5.0	5.0		5.0
Max Allow Hear						3.3			3.3	3.1		3.1	3.1		3.1
Queue Clearan	ce Time	(gs), s				18.4			15.5	3.6		8.8	4.1		9.5
Green Extension	xtension Time (g e), s					1.6			1.7	0.1		1.4	0.1		1.4
Phase Call Prol	bability					1.00			1.00	1.00		1.00	1.00)	1.00
Max Out Proba	bility				(0.04			0.01	0.00)	0.00	0.00)	0.00
	10.00	The state of						<u> Lili</u>		المنتدر	5 3	12.8	200		Pale
Movement Gro		ults			EB		-	WB		-	NB		-	SB	
Approach Move				L	T	R	L,	T	R	L	T	R	L	T	R
Assigned Move				5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow I				109	211	201	74	238		62	179	164	78	200	187
		w Rate (s), veh/h/l	n	1136	1870	1743	969	1804	-	1781	1870	1610	1781	1870	1683
Queue Service				7.3	7.6	7.8	5.6	9.1		1.6	6.4	6.8	2,1	7.2	7.5
Cycle Queue C		e Time (g_c) , s		16.4	7.6	7.8	13.5	9.1		1.6	6.4	6.8	2.1	7.2	7.5
Green Ratio (g				0.33	0.33	0.33	0.33	0.33		0.50	0.33	0.33	0.50	0.33	0.33
Capacity (c), v		W 2820		344	623	581	319	601		604	623	537	621	623	561
Volume-to-Cap				0.317	0.338	0.346	0.234	0.395		0.103	0.288	0.306	0.125	0.321	0.333
		In (95 th percentile)		89.5	148.3	139.5	58.6	170.9		27.8	123.5	113.9	35	139.5	130.9
		eh/ln (95 th percenti		3.5	5.8	5.6	2.3	6.7		1.1	4.9	4.5	1.4	5.5	5.2
		RQ) (95 th percent	ile)	0.00	0.00	0.00	0.00	0.00	1	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay				29.3	22.5	22.6	27.7	23.0	-	12.2	22.1	22.3	12.2	22.4	22.5
Incremental De				0.2	0.1	0.1	0.1	0.2		0.0	0,1	0.1	0.0	0.1	0.1
Initial Queue De				0.0	0.0	0.0	0.0	0.0		0.0	0.0	0.0	0.0	0.0	0.0
Control Delay (eh		29.5	22.7	22.7	27.8	23.2		12.2	22.2	22.4	12.3	22.5	22.6
Level of Service				С	С	С	C	С		В	C	C	В	C	C
Approach Delay	-			24.1		C	24.3	3	C	20.8	3	С	20.8	3	С
Intersection Del	lay, s/ve	h/LOS				22	2.5						С		
				100		1	THE PARTY	12/2	18-11	3	11.36	158.10			250
Berritime De	sults				EB			WB	В		NB		2.11	SB	
Multimodal Re Pedestrian LOS				2.28		В	2.28			2.11		В			В

HCS7 Signalized Intersection Results Summary General Information . 4 Intersection Information Agency Solaegui Engineers Duration, h 0.25 Analyst MSH Analysis Date Jun 4, 2019 Area Type Other Jurisdiction Carson City Time Period AM Peak Hour PHF 0.90 Urban Street Analysis Year Existing + Project 1>7:00 Analysis Period Intersection Saliman & 5th File Name SaFf19aw.xus **Project Description Demand Information** EB WB NB SB Approach Movement L T R L T R L T R T R L Demand (v), veh/h 61 175 52 164 296 65 92 225 26 65 133 49 Signal Information Als. Cycle, s 90.0 Reference Phase 2 517 Offset, s 0 Reference Point End Green 30.0 0.0 15.0 30.0 0.0 0.0 Uncoordinated Yes Simult. Gap E/W On Yellow 4.0 4.0 4.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S On Red 1.0 1.0 1.0 0.0 0.0 0.0 **Timer Results EBL** EBT WBL WBT NBL NBT SBL SBT Assigned Phase 2 6 3 8 7 4 Case Number 6.0 6.0 1.1 4.0 1.1 4.0 Phase Duration, s 35.0 35.0 20.0 35.0 20.0 35.0 Change Period, (Y+Rc), s 5.0 5.0 5.0 5.0 5.0 5.0 Max Allow Headway (MAH), s 3.3 3.3 3.1 3.1 3.1 3.1 Queue Clearance Time (gs), s 24.9 19.3 4.7 7.0 3.9 5.8 Green Extension Time (g e), s 1.2 1.7 0.1 0.8 0.1 0.9 Phase Call Probability 1,00 1.00 1.00 1.00 1.00 1.00 Max Out Probability 0.55 0.08 0.00 0.00 0.00 0.00 Movement Group Results EB WB NB SB Approach Movement L T R L T R L T R L T R 2 Assigned Movement 5 12 1 6 8 16 3 18 7 4 14 Adjusted Flow Rate (v), veh/h 68 129 123 182 401 102 141 138 72 104 99 Adjusted Saturation Flow Rate (s), veh/h/ln 980 1870 1700 1121 1801 1781 1790 1870 1781 1870 1655 Queue Service Time (g_s), s 5.7 4.4 4.7 12.6 17.2 2.7 4.9 5.0 1.9 3.5 3.8 Cycle Queue Clearance Time (g c), s 22.9 4.4 4.7 17.3 17.2 2.7 4.9 5.0 1.9 3.5 3.8 Green Ratio (g/C) 0.33 0.33 0.33 0.33 0.33 0.50 0.33 0.33 0.50 0.33 0.33 Capacity (c), veh/h 597 220 623 567 395 600 694 623 658 623 552 Volume-to-Capacity Ratio (X) 0.309 0.207 0.218 0.226 0.461 0.668 0.1470.231 0.110 0.166 0.179 Back of Queue (Q), ft/In (95 th percentile) 61.8 86.3 81.6 149.2 300.3 46.7 94.9 93 32.4 68.2 65.3 Back of Queue (Q), veh/ln (95 th percentile) 2.4 3.4 3.3 5.9 11.8 1.8 3.7 3.7 1.3 2.7 2.6 Queue Storage Ratio (RQ) (95 th percentile) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Uniform Delay (d 1), s/veh 35.6 21.5 21.6 25.7 27.8 12.1 21.6 21.7 12.0 21.2 21.3 Incremental Delay (d 2), s/veh 0.3 0.1 0.1 0.3 2.3 0.0 0.1 0.1 0.0 0.0 0.1 Initial Queue Delay (d 3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 35.9 Control Delay (d), s/veh 21.5 21.6 28.1 28.0 21.2 12.2 21.7 21.7 12.0 21.3 Level of Service (LOS) D C C C C B C C B C C Approach Delay, s/veh / LOS 24.6 C 19.2 C 28.1 B 18.8 В Intersection Delay, s/veh / LOS 23.6 C **Multimodal Results**

Pedestrian LOS Score / LOS

Bicycle LOS Score / LOS

2.28

WB

В

A

EB

В

A

2.28

0.75

2.11

SB

В

A

221

NB

B

A

2.11

0.80

HCS7 Signalized Intersection Results Summary General Information Intersection Information Agency Solaegui Engineers Duration, h 0.25 Analyst MSH Analysis Date Jun 4, 2019 Area Type Other PM Peak Hour PHF 0.90 Jurisdiction Carson City Time Period **Urban Street** Analysis Year Existing + Project Analysis Period 1>7:00 File Name Intersection Saliman & 5th SaFf19pw.xus Project Description WB NB SB Demand Information FB L T R L T R L T R L T R Approach Movement Demand (v), veh/h 103 313 62 71 184 37 56 200 114 70 273 89 Signal Information 44 90.0 Reference Phase Cycle, s STA Offset, s 0 Reference Point End Green 30.0 0.0 15.0 30.0 0.0 0.0 Uncoordinated Yes Simult. Gap E/W On Yellow 4.0 4.0 4.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S On Red 1.0 1.0 1.0 0.0 0.0 0.0 **Timer Results** EBL **EBT** WBL WBT NBL NBT SBL SBT Assigned Phase 2 6 3 8 7 4 Case Number 6.0 6.0 1.1 4.0 1.1 4.0 Phase Duration, s 35.0 35.0 20.0 35.0 20.0 35.0 5.0 5.0 5.0 5.0 5.0 5.0 Change Period, (Y+Rc), s 3.2 Max Allow Headway (MAH), s 3.3 3.3 3.1 3.2 3.1 19.3 16.0 3.6 8.9 4.1 9.9 Queue Clearance Time (gs), s 1.7 0.1 1.4 0.1 1.4 Green Extension Time (g_e), s 1.6 1.00 1.00 1.00 1.00 1.00 1.00 Phase Call Probability 0.06 0.02 0.00 0.00 0.00 0.00 Max Out Probability WB NB SB Movement Group Results EB Approach Movement L T R L T R L T R L T R 3 8 7 5 2 16 18 4 14 Assigned Movement 12 1 6 Adjusted Flow Rate (v), veh/h 114 213 203 79 246 62 182 166 78 209 193 1781 1870 1609 1781 1870 1669 Adjusted Saturation Flow Rate (s), veh/h/ln 1128 1870 1744 965 1806 Queue Service Time (gs), s 7.8 77 7.9 6.0 9.4 1.6 6.5 6.9 2.1 7.5 7.9 Cycle Queue Clearance Time (go), s 17.3 7.7 7.9 14.0 9.4 1.6 6.5 6.9 2.1 7.5 7.9 Green Ratio (g/C) 0.33 0.33 0.33 0.33 0.33 0.50 0.33 0.33 0.50 0.33 0.33 338 623 581 317 602 597 623 536 619 623 556 Capacity (c), veh/h 0.293 0.126 0.335 0.348 Volume-to-Capacity Ratio (X) 0.339 0.342 0.350 0.249 0.408 0.104 0.310 Back of Queue (Q), ft/In (95 th percentile) 95.1 149.9 141.3 62.5 177.1 27.8 125.8 115.9 35 146.5 136.3 3.7 5.9 5.7 2.5 7.0 1.1 5.0 4.6 1.4 5.8 5.4 Back of Queue (Q), veh/ln (95 th percentile) 0.00 0.00 0.00 Queue Storage Ratio (RQ) (95 th percentile) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 22.6 Uniform Delay (d1), s/veh 29.8 22.6 22.6 27.9 23.1 12.2 22.2 22.3 12.2 22.5 Incremental Delay (d 2), s/veh 0.2 0.1 0.1 0.2 0.2 0.0 0.1 0.1 0.0 0.1 0.1 Initial Queue Delay (d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 30.0 22.7 23.3 12.3 22.3 22.4 12.3 22.6 22.8 Control Delay (d), s/veh 22.8 28.1 Level of Service (LOS) C C C C В C C В C C C Approach Delay, s/veh / LOS 24.3 C 24.5 C 20.8 C 21.0 C Intersection Delay, s/veh / LOS 22.6 C

Multimodal Results	E		V	/B	N	В	S		
Pedestrian LOS Score / LOS	2.28	В	2.28	В	2.11	В	2.11	В	222
Bicycle LOS Score / LOS	0.93	Α	1.02	Α	0.83	Α	0.88	Α	

HCS7 Signalized Intersection Results Summary

General Inform	nation								Inters	ection In	formati	on	1	ا ما ما ما ا	10/10			
Agency		Solaegui Engineers							Durati	ion, h	0.25			417				
Analyst		MSH		Analys	is Date	Jun 4	2019		Area ⁻		Othe	Г						
Jurisdiction		Carson City		Time F		-	eak Hou	\rightarrow	PHF	71	0.90				•			
Urban Street					is Year	-		-	W-1002 100-00	sis Period	_		4					
Intersection		Saliman & 5th		File Na		_	Oax.xus		, intary	010 1 01100	1	.00	-					
Project Descrip	tion	Camman a our		Li no rec	21110	Jour 14	Oux.xus			_			- 1	1111	5.7			
r roject bescrip	don'	2 - 500/0		1000	No.	SEC.		2.72		HILI	2500	250.0		No.	10000			
Demand Inform	nation		-		EB			W	В		NE	3	T	SB				
Approach Move	ement			L	T	R	L	T		R L	T	R	L	T	R			
Demand (v), v	eh/h			60	180	60	170	34	0 1	40 100	270	70	100	180	130			
13.	200	STATE OF THE STATE			100			300	1000	SOL S	100	Die Ti		157				
Signal Informa	ition				. 5	1 7	Line							-	1			
Cycle, s	90.0	Reference Phase	2		2 6	1 15	57	75		1			♦	1	stz.			
Offset, s	0	Reference Point	End	Green	30.0	15.0	30.0	0.0	0	.0 0.0			K					
Uncoordinated	Yes	Simult. Gap E/W	On	Yellow		4.0	4.0	0.0		0 0.0				1	Kİ			
Force Mode	Fixed	Simult. Gap N/S	On	Red	1.0	1.0	1.0	0.0		.0 0.0		1	8	. 7				
alk State	1	- 100 - 1					1-7-1	17	374	-	-	33/9	-	6	3			
Timer Results				EBL	-	EBT	WB	L	WBT			NBT	SB	_	SBT			
Assigned Phas	е					2			6	3		8	7		4			
Case Number					_	6.0			6.0	1.		4.0	1.1		4.0			
Phase Duration					_	35.0			35.0	20.		35.0	20.0		35.0			
Change Period						5.0			5.0	5.0)	5.0	5.0		5.0			
Max Allow Hea					_	3.3			3.3	3.	1	3.2	3.1		3.2			
Queue Clearan	ce Time	(gs), s				32.0			28.1	5.0		9.2	5.0		9.0			
Green Extension	n Time	(ge), S				0.0			0.7	0.	1	1.4	0.1		1.4			
Phase Call Pro	Call Probability								1.00			1.00	1.0	0	1.00	1.00)	1.00
Max Out Proba	bility		-			1.00			1.00	0,0	0	0.00	0.00)	0.00			
Movement Gro	un Poe	rulte	-	-	EB			WB		7	NB		1000	SB	-			
Approach Move		una	_	L	T	R	L	T	R	L	T	R	L	T	R			
Assigned Move				5	2	12	1	6	16		8	18	7	4	14			
Adjusted Flow I) veh/h		67	137	130	189	533	_	111	194	184	111	182	162			
		w Rate (s), veh/h/li	1	869	1870	1686	1106	1761		1781	_		1781	1870	1548			
Queue Service	_			3.9	4.7	5.0	13.4	26.1	-	3.0	6.9	7.2	3.0	6.5	7.0			
		e Time (g_c) , s		30.0	4.7	5.0	18.4	26.1		3.0	6.9	7.2	3.0	6.5	7.0			
Green Ratio (g		5 Timo (g c), 5		0.33	0.33		0.33	0.33		0.50	0.33	0.33	0.50	0.33	0.33			
Capacity (c), v				118	623	562	387	587	-	618	623	572	609	623	515			
Volume-to-Cap		tio (X)		0.565	0.219		0.488	_	-	0.180		-	0.182	0.292	0.31			
Carried Strategy and Company of the Strategy		In (95 th percentile)	n = 35 = 10	72.5	91.8		157.4		-	51.1	134.9	-	51.1	125.7	113.			
W-T-This is the same		eh/ln (95 th percenti		2.9	3.6	3.5		19.2	_	2.0	5.3	5.0	2.0	4.9	4.5			
		RQ) (95 th percent		0.00	0.00	0.00		0.00	_	0.00	0.00	0.00	0.00	0.00	0.00			
Uniform Delay			110)	43.9	21.6	21.7	28.3	28.7	_	12.5	22.3	22.4	12.5	22.2	22.3			
Incremental De				3.9	0.1	0.1	0.4	17.7		0.1	0.1	0.1	0.1	0.1	0.1			
Initial Queue Di				0.0	0.0	0.0	0.0	0.0	-	0.0	9.0	0.0	0.0	0.0	0.0			
Control Delay (47.8	21.6	21.7	28.7	46.4		12.6	22.4	22.5	12.6	22.3	22.5			
Level of Service			-	D D	C C	C C	C C	D D	-	B	C C	C C	12.6 B	22.3 C	C C			
Approach Delay				26.9		C	41.8	-	D	20.	4	C	20.0		В			
Intersection De				20.8		-	9.1	1	D	20.	_		C 20.0	-	0			
	,		5,08	31-13	19.00	2.	MINERS.	VA.	1000	Since	1000	1		3371	Jan 1			
Multimodal Re	sults				EB		-	WB	-	1	NB	2 5	-	SB				
Pedestrian LOS		/LOS		2.28		В	2.28	-	В	2.1		В	2.11		В			
	ore / LC			0.76	_	A	1.68	_	В	0.8		A	0.86		A			

HCS7 Signalized Intersection Results Summary Intersection Information I also de la de la General Information Solaegui Engineers Duration, h 0.25 Agency Other Analyst MSH Analysis Date Jun 4, 2019 Area Type 0.90 PM Peak Hour PHF Jurisdiction Carson City Time Period Analysis Year 2040 Base Analysis Period 1>7:00 Urban Street Intersection Saliman & 5th File Name SaFf40px.xus Project Description Demand Information EB WR NB SB R R L T R L R T L T Approach Movement T L 140 380 90 80 250 100 60 260 160 110 280 80 Demand (v), veh/h Signal Information M. Cycle, s 90.0 Reference Phase 2 四个四 Reference Point Offset, s 0 End Green 30.0 0.0 0.0 15.0 30.0 0.0 Uncoordinated Yes Simult. Gap E/W On Yellow 4.0 0.0 4.0 4.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S On Red 1.0 1.0 1.0 0.0 0.0 0.0 Timer Results EBI. FBT WBL WBT NBL NBT SBL SBT Assigned Phase 2 6 3 8 7 4 6.0 6.0 1.1 4.0 1.1 4.0 Case Number 35.0 35.0 20.0 35.0 20.0 35.0 Phase Duration, s 5.0 5.0 5.0 5.0 5.0 Change Period, (Y+Ro), s 5,0 Max Allow Headway (MAH), s 3.4 3.4 3.1 3.2 3.1 3.2 3.7 11.6 9.8 Queue Clearance Time (gs), s 20.2 5.3 32.0 0.1 1.7 Green Extension Time (g), s 0.0 2.3 0.1 1.7 1.00 1.00 1.00 1.00 Phase Call Probability 1.00 1.00 0.20 0.00 0.00 0.00 0.00 1.00 Max Out Probability Movement Group Results NB SB EB WB R R T R L T R Approach Movement L T L T L 7 8 4 14 5 12 6 16 3 18 Assigned Movement 1 389 67 247 220 122 207 193 Adjusted Flow Rate (y), yeh/h 156 269 253 89 1687 Adjusted Saturation Flow Rate (s), veh/h/ln 991 1870 1725 877 1763 1781 1870 1595 1781 1870 13.0 7.9 17.0 1.7 9.1 9.6 3.3 7.5 7.8 Queue Service Time (gs), s 10.1 10.3 Cycle Queue Clearance Time (g c), s 30.0 10.1 10.3 18.2 17.0 1.7 9.1 9.6 3.3 7.5 7.8 0.33 0.33 0.33 0.33 0.33 0.50 0.33 0.33 0.50 0.33 0.33 Green Ratio (g/C) 223 623 575 272 588 598 623 532 566 623 562 Capachy (c), veh/h 0.343 0.327 0.111 0.396 0.413 0.216 0.332 Volume-to-Capacity Ratio (X) 0.696 0.432 0.440 0.662 176 292.2 29.9 177.6 158.8 56.5 144.9 136.1 Back of Queue (Q), ft/In (95 th percentile) 195.5 181.8 75.2 7.3 1.2 7.0 6.3 22 5.7 5.4 Back of Queue (Q), veh/ln (95 th percentile) 6.9 7.7 3.0 11.5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Queue Storage Ratio (RQ) (95 th percentile) 0.00 Uniform Delay (d1), s/veh 39.0 23.4 23.4 30.6 25.7 12.3 23.0 23.2 12.9 22.5 22.6 Incremental Delay (d2), s/veh 7.7 0.2 0.2 0.3 2.2 0.0 0.2 0.2 0.1 0.1 0.1 Initial Queue ਹਿਦਾਕਾਂ (ਹ ਤ), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 46.7 23.5 23.6 30.8 27.9 12.3 23.2 23.4 13.0 22.6 22.7 Control Delay (d), s/veh B C В Level of Service (LOS) D C C C C C C 28.9 21.9 20.4 C Approach Delay, s/veh / LOS C 28.4 C C 25.1 C Intersection Delay, s/veh / LOS NB Multimodal Results EB WB SB

Pedestrian LOS Score / LOS

Bicycle LOS Score / LOS

2.28

1.28

B

A

2.11

0.93

B

A

2.28

1.05

B

A

2.11

0.92

224

B

HCS7 Signalized Intersection Results Summary يا دا يا داده او او دا دا يا يا د General Information Intersection Information Solaegui Engineers 0.25 Agency Duration, h Analyst MSH Analysis Date Jun 4, 2019 Area Type Other 0.90 Jurisdiction Carson City Time Period AM Peak Hour PHF **Urban Street** 2040 Base + Analysis Year Analysis Period 1>7:00 Project SaFf40aw.xus Intersection Saliman & 5th File Name Project Description FB Demand Information WB NB SB Approach Movement R T R R R L T L L T T L 342 140 Demand (v), veh/h 69 185 60 171 100 274 73 100 181 133 Signal Information JJ. 2 Cycle, s 90.0 Reference Phase SAV Offset, s 0 Reference Point End Green 30.0 15.0 30.0 0.0 0.0 0.0 Uncoordinated Yes Simult. Gap E/W On Yellow 4.0 4.0 4.0 0.0 0.0 0.0 Force Mode Fixed Simult. Gap N/S On Red 1.0 1.0 1.0 0.0 0.0 0.0 **Timer Results** EBL **EBT** WBL WBT NBL NBT SBL SBT Assigned Phase 6 3 8 7 4 2 Case Number 6.0 6.0 1.1 4.0 1.1 4.0 20.0 Phase Duration, s 35.0 35.0 35.0 20.0 35.0 Change Period, (Y+Rc), s 5.0 5.0 5.0 5.0 5.0 5.0 3.1 3.2 Max Allow Headway (MAH), s 3.4 3.4 3.1 3.2 5.0 Queue Clearance Time (gs), s 32.0 28.2 9.4 5.0 9.1 Green Extension Time (g_e) , s 0.0 0.7 0.1 1.4 0.1 1.4 Phase Call Probability 1.00 1.00 1.00 1.00 1.00 1.00 Max Out Probability 1.00 0.00 0.00 0.00 0.00 1.00 Movement Group Results EB WB NB SB Approach Movement L T R L T R L T R L T R Assigned Movement 5 3 8 4 14 2 12 1 6 16 18 7 Adjusted Flow Rate (v), veh/h 77 140 133 190 536 111 198 187 111 185 164 Adjusted Saturation Flow Rate (s), veh/h/ln 867 1870 1689 1101 1761 1781 1870 1712 1781 1870 1542 3.8 3.0 7.1 7.4 3.0 6.6 7.1 Queue Service Time (gs), s 4.8 5.1 13.6 26.2 30.0 7.1 7.4 Cycle Queue Clearance Time (g c), s 4.8 5.1 18.7 26.2 3.0 3.0 6.6 7.1 Green Ratio (g/C) 0.33 0.33 0.33 0.33 0.33 0.50 0.33 0.33 0.50 0.33 0.33 Capacity (c), veh/h 116 623 563 384 587 616 623 571 606 623 514 Volume-to-Capacity Ratio (X) 0.658 0.224 0.236 0.494 | 0.912 0.180 0.318 0.328 0.296 0.319 0.183 Back of Queue (Q), fl/ln (95 th percentile) 92 93.9 88.3 159.1 51.1 138.1 127.7 493.1 131 51.1 114.7 Back of Queue (Q), veh/ln (95 th percentile) 3.6 3.7 3.5 6.3 19.4 2.0 5.4 5.2 2.0 5.0 4.5 Queue Storage Ratio (RQ) (95 th percentile) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 Uniform Delay (d 1), s/veh 44.1 21.6 21.7 28.5 28.7 12.5 22.4 22.5 12.5 22.2 22.4 Incremental Delay (d 2), s/veh 10.4 0.1 0.1 0.4 18.3 0.1 0.1 0.1 0.1 0.1 0.1 Initial Queue Delay (d3), s/veh 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Control Delay (d), s/veh 54.5 21.7 21.8 47.0 12.6 22.5 28.8 22.6 126 22.3 22.5 Level of Service (LOS) D C С C D В C C B C C Approach Delay, s/veh / LOS 28.9 C 42.2 D 20.3 C 20.0 C Intersection Delay, s/veh / LOS 29.6 C

Multimodal Results	E	В	N	B .	N	В	S	В
Pedestrian LOS Score / LOS	2.28	В	2.28	В	2.11	В	2.11	В
Bicycle LOS Score / LOS	0.78	A	1.68	В	0.90	Α	0.87	A

A STATE OF THE STA	8103	Market Internal	COLUM	nalize	100		70	308	BLG.	3139	5135	35713	FIRE	-	Lee
General Inform	nation		-					li	ntersec	tion Info	rmatio	n	1	4 2.4- 1 3	1.
Agency	IIIIIIIII	Solaegui Engineers						- 0	uration	, h	0.25			4.1100	
Analyst		MSH		Analys	is Date	Jun 4,	2019	P	rea Typ	e	Other		4		
Jurisdiction		Carson City		Time P		-	ak Hou	_	HF		0.90			icj.	产
Urban Street		Caraon Ony	_	Analys		2040			nalysis	Period	1> 7:0	0			
Orban Street				, many c		Projec							1	5.1%	
Intersection		Saliman & 5th		File Na	me	SaFf4	0pw.xus						1	4 1 4-4.4	1
Project Descrip	otion														
- LV 15 9	464	200		10 18 5						-	CAN D		-	OD	-2
Demand Infor	mation				EB			WB	-		NB	1 =		SB	
Approach Mov	ement			L	T	R	L	T	R	L	T	R	L	T	R
Demand (v), v	veh/h			145	384	90	83	257	100	60	263	162	110	284	90
	ASSESSED.	A STATE OF THE STA		The same	200		THE	700	2000	-		-	-		1
Signal Informa	7	Reference Phase	2	1	2 8	1 8	Mis		1				4	1	Φ.
Cycle, s	90.0			-	-52	1	N/					40	2 2		
Offset, s	0	Reference Point	End	Green		15.0	30.0	0.0	0.0	0.0			>		-4
Uncoordinated	-	Simult. Gap E/W	On On	Yellow Red	1.0	1.0	4.0	0.0	0.0	0.0	-		1	4	Y
Force Mode	Fixed	Simult. Gap N/S	On	IXed	1.0	1.0	7.0	10.0	0,0	70.0	N. T.	1128			731
Timer Results				EBL		EBT	WBI		WBT	NBI		NBT	SBL		SBT
Assigned Phas			_	-		2	-		6	3		8	7		4
Case Number						6.0			6.0	1.1		4.0	1.1		4.0
Phase Duration	n e					35.0			35.0	20.0)	35.0	20.0		35.0
Change Period		a) e	-			5.0			5.0	5.0		5.0	5.0		5.0
Max Allow Hea					_	3.4	-		3.4	3.1		3.2	3,1		3.2
Queue Clearai						32.0		\neg	20.7	3.7		11.7	5.3		10.1
Green Extensi				1		0.0			2.3	0.1		1.7	0.1		1.7
Phase Call Pro		(86),9			-	1,00			1.00	1.00		1.00	1.00)	1.00
the same of the sa				1	_	1.00			0.23	0.00	_	0.00	0.00)	0.00
Wax Out 1 Tob	Out Probability vement Group Results			1	1000		1	200	Topi	1	332	-63	- 13		200
Movement Gr	oup Re	sults			EB			WB			NB			SB	
Approach Mov	ement			L	T	R	L	T	R	L	T	R	L,	T	R
Assigned Mov	ement			5	2	12	1	6	16	3	8	18	7	4	14
Adjusted Flow	Rate (/), veh/h		161	272	255	92	397		67	250	222	122	216	200
Adjusted Satu	ration Fl	ow Rate (s), veh/h/	ln	984	1870	1726	873	1765		1781	1870	1595	1781	1870	1672
Queue Service	e Time (g s), S		12.6	10.2	10.4	8,3	17.4	-	1.7	9.3	9,7	3.3	7.8	8.1
Cycle Queue	Clearand	ce Time ($g \circ$), s		30.0	10.2	10.4	18.7	17.4		1.7	9.3	9.7	3.3	7.8	8.1
Green Ratio (g/C)			0.33	0.33	0.33	0.33	0.33		0.50	0.33	0.33	0.50	0.33	0.33
Capacity (c),				218	623	575	270	588		591	623	532	564	623	558
Volume-to-Ca				0.740	0.436	0.443	Acres de la constante de la co	0.674	-	0.113	0.401	0.418	0.217	0.346	0.358
	-	t/ln (95 th percentile		191.9		183.7	78.4	299.2	_	29.9	180.1	160.9	56.5	151.9	141.0
	_	eh/ln (95 th percent		7.6	7.7	7.3	3.1	11.8	_	1.2	7.1	6.3	2.2	6.0	5.6
		(RQ) (95 th percen	tile)	0.00	0.00	0.00	0.00	0.00	-	0.00	0.00	0.00	0.00	0.00	0.00
Uniform Delay	_			39.6	23.4	23.5	30.8	25.8	-	12.3	23.1	23.2	13.0	22.6	22.7
Incremental D				11.2	0.2	0.2	0.3	2.5	-	0.0	0.2	0.2	0.1	0.1	0.1
Initial Queue I				0.0	0.0	0.0	0.0	0.0	-	0.0	0.0	0.0	0.0	0.0	0.0
Control Delay	-			50.8	23.6	23.7	31.1	28.3	-	12.3	23.2	23.4	13.0	22.7 C	22.9 C
Level of Servi	_			D	С	C	C	C	0	B	C	C	B		C
Approach Del	-			30,	J	C	28.	ď	С	22.	U	С	20.0 C		-
Intersection D	elay, s/v	eh / LOS	6 1	-	-	2	5.6	C 15			GOLDS.	2000	0		11
Multime del E	lonult-	Par State of	Carl	4	EB		1	WB	- 100	- Contract	NB		1	SB	
Multimodal R Pedestrian LC		1108		2.2	-	В	2.2	-	В	2.1		В	2.1		В
	ノン さいいに	, LOO		2.2		1.7	2.2	-	A		3	A	0.9		A

	HCS7 Two-V	Vay Stop-Control Report	
General Information		Site Information	
Analyst	MSH	Intersection	Saliman & Little
Agency/Co.	Solaegui Engineers	Jurisdiction	Carson City
Date Performed	6/4/2019	East/West Street	Little Lane
Analysis Year	2019	North/South Street	Saliman Road
Time Analyzed	AM Existing	Peak Hour Factor	0.90
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description			

Approach		Eastb	ound			West	bnuoc			North	bound			South	bound	
Movement	u	L	Т	R	U	L	Т	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	1	2	0	0	0	2	C
Configuration			LR							L	T				Т	TI
Volume (veh/h)		51		42					0	81	321				255	8
Percent Heavy Vehicles (%)		2		2					2	2						
Proportion Time Blocked																
Percent Grade (%)		()													
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadway	/s														
Base Critical Headway (sec)		7.5		6.9						4.1						
Critical Headway (sec)		6.84		6.94						4,14						
Base Follow-Up Headway (sec)		3.5		3,3						2,2						
Follow-Up Headway (sec)		3.52		3.32						2.22						
Delay, Queue Length, an	d Level	of Se	ervice													
Flow Rate, v (veh/h)			103							90						
Capacity, c (veh/h)			472							1174						
v/c Ratio			0.22			L				0.08						
95% Queue Length, Q ₉₅ (veh)			0.8							0.2						
Control Delay (s/veh)			14.8							8.3						
Level of Service (LOS)			В							Α						
Approach Delay (s/veh)		14	1.8							1	.7					
Approach LOS		F	3													

eneral Information		Site Information	
Analyst	MSH	Intersection	Saliman & Little
Agency/Co.	Solaegui Engineers	Jurisdiction	Carson City
Date Performed	6/4/2019	East/West Street	Little Lane
Analysis Year	2019	North/South Street	Saliman Road
Time Analyzed	PM Existing	Peak Hour Factor	0.90
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description			

Approach		Eastbo	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	T	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	10	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	1	2	0	0	0	2	0
Configuration			LR							L	I				Т	TR
Volume (veh/h)		115		68					0	28	231				315	106
Percent Heavy Vehicles (%)		2		2					2	2						
Proportion Time Blocked																
Percent Grade (%)		0														
Right Turn Channelized																
Median Type Storage				Undiv	/ided											
Critical and Follow-up He	eadways															
Base Critical Headway (sec)		7.5		6.9						4.1						
Critical Headway (sec)	1	6.84		6.94						4.14						
Base Follow-Up Headway (sec)		3,5		3.3						2.2						
Follow-Up Headway (sec)		3.52		3.32						2.22						
Delay, Queue Length, and	d Level o	of Se	rvice													
Flow Rate, v (veh/h)			203							31						
Capacity, c (veh/h)			505							1090						
v/c Ratio			0.40							0.03						
95% Queue Length, Q ₉₅ (veh)			1.9							0.1						
Control Delay (s/veh)			16.8							8.4						
Level of Service (LOS)			С							A						
Approach Delay (s/veh)		16.	8							0	.9					
Approach LOS		C														-

General Information		Site Information	
Analyst	MSH	Intersection	Saliman & Little
Agency/Co.	Solaegui Engineers	Jurisdiction	Carson City
Date Performed	6/4/2019	East/West Street	Little Lane
Analysis Year	2019	North/South Street	Saliman Road
Time Analyzed	AM Existing + Project	Peak Hour Factor	0.90
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description			

Vehicle Volumes and Adj	ustmer	nts														
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	r	T	R	u	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	10	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	1	2	0	0	0	2	0
Configuration			LR							L	T				T	TR
Volume (veh/h)		58		67					0	89	321				255	90
Percent Heavy Vehicles (%)		2		2					2	2						
Proportion Time Blocked																
Percent Grade (%)		(0													
Right Turn Channelized						341										
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadway	/5														
Base Critical Headway (sec)		7.5		6.9						4.1			I			
Critical Headway (sec)		6.84		6.94						4.14						
Base Follow-Up Headway (sec)		3.5		3.3						2.2						
Follow-Up Headway (sec)		3.52		3.32				ira-		2.22						
Delay, Queue Length, an	d Level	of Se	rvice													
Flow Rate, v (veh/h)			139							99						
Capacity, c (veh/h)			492							1172						
v/c Ratio			0.28							0.08						
95% Queue Length, Q ₉₅ (veh)			1.1							0.3						
Control Delay (s/veh)			15.2							8.4						
Level of Service (LOS)			С							А						
Approach Delay (s/veh)		15	5.2							1	.8					
Approach LOS	1	(-													

General Information		Site Information	
Analyst	MSH	Intersection	Saliman & Little
Agency/Co.	Solaegui Engineers	Jurisdiction	Carson City
Date Performed	6/4/2019	East/West Street	Little Lane
Analysis Year	2019	North/South Street	Saliman Road
Time Analyzed	PM Existing + Project	Peak Hour Factor	0.90
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description			

Vehicle Volumes and Adj	ustme	nts														
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	Т	R
Priority		10	11	12		7	8	9	10	1	2	3	40	4	5	6
Number of Lanes		0	1	0		0	0	0	0	1	2	0	0	0	2	0
Configuration			LR							L	T				Т	TR
Volume (veh/h)		120		84					0	56	231				315	113
Percent Heavy Vehicles (%)		2		2					2	2						
Proportion Time Blocked																
Percent Grade (%)		()													
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	eadwa	ys														
Base Critical Headway (sec)		7.5		6.9						4.1						
Critical Headway (sec)		6.84		6.94						4.14						
Base Follow-Up Headway (sec)		3.5		3,3						2.2						
Follow-Up Headway (sec)		3.52		3.32						2.22						
Delay, Queue Length, an	d Leve	l of Se	rvice													
Flow Rate, v (veh/h)			227							62						
Capacity, c (veh/h)			470							1083						
v/c Ratio			0.48							0.06						
95% Queue Length, Q ₉₅ (veh)			2.6							0.2						
Control Delay (s/veh)			19.6							8.5						
Level of Service (LOS)			C							А						
Approach Delay (s/veh)		19	.6							1	.7					
Approach LOS		(

General Information		Site Information	
Analyst	MSH	Intersection	Saliman & Little
Agency/Co.	Solaegui Engineers	Jurisdiction	Carson City
Date Performed	6/4/2019	East/West Street	Little Lane
Analysis Year	2040	North/South Street	Saliman Road
Time Analyzed	AM Base	Peak Hour Factor	0.90
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description			

Approach		Eastb	ound			West	ound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	10	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	1	2	0	0	0	2	0
Configuration			LR							L	Т				T	TR
Volume (veh/h)		60		50					0	100	400				320	110
Percent Heavy Vehicles (%)		2		2					2	2						
Proportion Time Blocked																
Percent Grade (%)		()													
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	leadway	/s														
Base Critical Headway (sec)		7.5		6.9						4.1						
Critical Headway (sec)		6.84		6.94						4.14						
Base Follow-Up Headway (sec)		3.5		3.3						2.2						
Follow-Up Headway (sec)		3.52		3.32						2.22						
Delay, Queue Length, an	d Level	of Se	ervice													
Flow Rate, v (veh/h)			122							111						
Capacity, c (veh/h)			376							1081						
v/c Ratio			0.33							0.10						
95% Queue Length, Q ₉₅ (veh)			1.4							0.3						
Control Delay (s/veh)			19.1							8.7						
Level of Service (LOS)			С							A						
Approach Delay (s/veh)		19	9,1							1	.7					
Approach LOS		(

		Vay Stop-Control Report	
General Information		Site Information	
Analyst	MSH	Intersection	Saliman & Little
Agency/Co.	Solaegui Engineers	Jurisdiction	Carson City
Date Performed	6/4/2019	East/West Street	Little Lane
Analysis Year	2040	North/South Street	Saliman Road
Time Analyzed	PM Base	Peak Hour Factor	0.90
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description			

Vehicle Volumes and Ad	justme	nts														
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	T	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	10	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	1	2	0	0	0	2	0
Configuration			LR							L	T				T	TR
Volume (veh/h)		140		90					0	40	310				370	120
Percent Heavy Vehicles (%)		2		2					2	2						
Proportion Time Blocked																
Percent Grade (%)		-	0													
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	leadwa	ys														
Base Critical Headway (sec)		7.5		6.9						4.1						
Critical Headway (sec)		6.84		6.94						4.14						
Base Follow-Up Headway (sec)		3.5		3.3						2.2						
Follow-Up Headway (sec)		3.52		3.32						2.22						
Delay, Queue Length, an	d Leve	l of S	ervice					-10								
Flow Rate, v (veh/h)			256							44						
Capacity, c (veh/h)			427							1021						
v/c Ratio			0.60							0.04						
95% Queue Length, Q ₉₅ (veh)			3.8							0.1						
Control Delay (s/veh)			25.3							8.7						
Level of Service (LOS)			D							A						
Approach Delay (s/veh)		2:	5.3							1	.0					
Approach LOS		1	D													

HCS7 Two-Way Stop-Control Report Site Information General Information Saliman & Little MSH Intersection Analyst Jurisdiction Carson City Solaegui Engineers Agency/Co. East/West Street Little Lane 6/4/2019 Date Performed Saliman Road Analysis Year 2040 North/South Street 0.90 AM Base + Project Peak Hour Factor Time Analyzed 0.25 Analysis Time Period (hrs) Intersection Orientation North-South **Project Description**

Vehicle Volumes and Adj	justmer	nts														
Approach		Eastb	ound			Westi	ound			North	bound			South	bound	
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	10	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	1	2	0	0	0	2	0
Configuration			LR							L	Т				Т	TR
Volume (veh/h)		67		75					0	108	400				320	112
Percent Heavy Vehicles (%)		2		2					2	2						
Proportion Time Blocked																
Percent Grade (%)		(0													
Right Turn Channelized																
Median Type Storage				Undiv	vided											
Critical and Follow-up H	eadway	ys														
Base Critical Headway (sec)		7.5		6.9						4.1						
Critical Headway (sec)		6.84		6.94						4.14						
Base Follow-Up Headway (sec)		3.5		3.3						2.2						
Follow-Up Headway (sec)		3.52		3.32						2.22						
Delay, Queue Length, an	d Level	of Se	ervice													
Flow Rate, v (veh/h)			158							120						
Capacity, c (veh/h)			393							1079						
v/c Ratio			0.40							0.11						
95% Queue Length, Q ₉₅ (veh)			1.9							0.4						
Control Delay (s/veh)			20.2							8.8						
Level of Service (LOS)			C							А						
Approach Delay (s/veh)	1	20	0.2							1	.9					
Approach LOS			C													

HCS7 Two-Way Stop-Control Report Site Information **General Information** Saliman & Little MSH. Intersection Analyst Carson City Jurisdiction Solaegui Engineers Agency/Co. East/West Street Little Lane 6/4/2019 Date Performed Saliman Road 2040 North/South Street Analysis Year 0.90 PM Base + Project Peak Hour Factor Time Analyzed 0.25 Analysis Time Period (hrs) Intersection Orientation North-South **Project Description**

Lanes

Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	Ü	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	1	0		0	0	0	0	1	2	0	0	0	2	0
Configuration			LR							L	Т				T	TF
Volume (veh/h)		145		106					0	68	310				370	12
Percent Heavy Vehicles (%)		2		2					2	2						
Proportion Time Blocked																
Percent Grade (%)		()													
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		7.5		6.9						4.1						
Critical Headway (sec)		6.84		6.94						4.14						
Base Follow-Up Headway (sec)		3.5		3.3						2.2						
Follow-Up Headway (sec)		3.52		3.32						2.22						
Delay, Queue Length, an	d Leve	of Se	rvice													
Flow Rate, v (veh/h)			279							76						
Capacity, c (veh/h)			394							1014						
v/c Ratio			0.71							0.07						
95% Queue Length, Q ₉₅ (veh)			5.3							0.2						

234

8.8

A

1.6

Control Delay (s/veh)

Level of Service (LOS)

Approach LOS

Approach Delay (s/veh)

Vehicle Volumes and Adjustments

33.4 D

33.4

General Information		Site Information	
Analyst	MSH	Intersection	5th & Parkland
Agency/Co.	Solaegui Engineers	Jurisdiction	Carson City
Date Performed	6/4/2019	East/West Street	5th Street
Analysis Year	2019	North/South Street	Parkland Avenue
Time Analyzed	AM Existing	Peak Hour Factor	0.90
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description			

Vehicle Volumes and Ad	justme	nts														
Approach		Eastl	oound			Westl	oound			North	bound			South	bound	
Movement	U	L	T	R	U	L	Т	R	U	L	T	R	U	L	T	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		0	1	0		0	0	0
Configuration				TR		L	Т				LR					
Volume (veh/h)			222	5		6	458			20		8				
Percent Heavy Vehicles (%)						2				2		2				
Proportion Time Blocked																
Percent Grade (%)											0					
Right Turn Channelized																
Median Type Storage				Und	ivided											
Critical and Follow-up H	leadwa	ys														
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.12				6.42		6.22				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2,22				3.52		3.32				
Delay, Queue Length, ar	nd Leve	l of S	ervice													
Flow Rate, v (veh/h)						7					31					
Capacity, c (veh/h)						1313					432					
v/c Ratio						0.01					0.07					
95% Queue Length, Q ₉₅ (veh)						0.0					0.2					
Control Delay (s/veh)						7.8					14.0					
Level of Service (LOS)						A					В					
Approach Delay (s/veh)						0	0.1			1	4.0					
Approach LOS											В					

General Information		Site Information	
Analyst	MSH	Intersection	5th & Parkland
Agency/Co.	Solaegui Engineers	Jurisdiction	Carson City
Date Performed	6/4/2019	East/West Street	5th Street
Analysis Year	2019	North/South Street	Parkland Avenue
Time Analyzed	PM Existing	Peak Hour Factor	0.90
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description			

Vehicle Volumes and Ad	justme	nts														
Approach	T	Eastl	oound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	T	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		0	1	0		0	0	0
Configuration				TR		L	T				LR					
Volume (veh/h)			472	20		11	269			13		19				
Percent Heavy Vehicles (%)						2				2		2				
Proportion Time Blocked																
Percent Grade (%))					
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up F	leadwa	ys														
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.12				6.42		6.22				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.22				3.52		3.32				
Delay, Queue Length, ar	nd Leve	l of S	ervice													
Flow Rate, v (veh/h)						12					36					
Capacity, c (veh/h)						1023					426					
v/c Ratio						0.01					0.08					
95% Queue Length, Q ₉₅ (veh)						0.0					0.3					
Control Delay (s/veh)						8.6					14.2					
Level of Service (LOS)						A					В					
Approach Delay (s/veh)						0	0.3			1	4.2					
Approach LOS											В					

	TICS/ TWO VV	ay Stop-Control Report	
General Information		Site Information	
Analyst	MSH	Intersection	5th & Parkland
Agency/Co.	Solaegui Engineers	Jurisdiction	Carson City
Date Performed	6/4/2019	East/West Street	5th Street
Analysis Year	2019	North/South Street	Parkland Avenue
Time Analyzed	AM Existing + Project	Peak Hour Factor	0.90
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description			

Vehicle Volumes and Ad	justmei	nts														
Approach		Eastl	bound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4U.	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		0	1	0		0	0	0
Configuration				TR		L	Т				LR					
Volume (veh/h)			223	8		8	462			29		13				
Percent Heavy Vehicles (%)						2				2		2				
Proportion Time Blocked						3										
Percent Grade (%)											0					
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadway	ys														
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.12				6.42		6.22				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.22				3.52		3.32				
Delay, Queue Length, an	d Level	of S	ervice													
Flow Rate, v (veh/h)						9					47					
Capacity, c (veh/h)						1308					432					
v/c Ratio						0.01					0.11					
95% Queue Length, Q ₉₅ (veh)						0.0					0.4					
Control Delay (s/veh)					100	7.8					14.3					
Level of Service (LOS)						A					В					
Approach Delay (s/veh)						0	.1			1	4.3					

Approach LOS

HCS7 Two-Way Stop-Control Report **Site Information General Information** 5th & Parkland Intersection MSH Analyst Carson City Jurisdiction Solaegui Engineers Agency/Co. East/West Street 5th Street Date Performed 6/4/2019 Parkland Avenue 2019 North/South Street Analysis Year 0.90 PM Existing + Project Peak Hour Factor Time Analyzed 0.25 Analysis Time Period (hrs) Intersection Orientation East-West Project Description

Vehicle Volumes and Ad	justme	nts														
Approach		Eastl	bound			Westl	oound			North	bound			South	bound	
Movement	U	L	T	R	U	L	T	R	Ų	L	Т	R	U	L	T	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		.0	1	0		0	0	0
Configuration				TR		L	T				LR					
Volume (veh/h)			475	31		17	272			18		22				
Percent Heavy Vehicles (%)						2				2		2				
Proportion Time Blocked																
Percent Grade (%)											0					
Right Turn Channelized																
Median Type Storage				Undi	ivided											
Critical and Follow-up F	leadwa	ys														
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.12				6.42		6,22				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.22				3.52		3.32				
Delay, Queue Length, ar	nd Leve	l of S	ervice													
Flow Rate, v (veh/h)						19					44					
Capacity, c (veh/h)						1009					404					
v/c Ratio						0.02					0.11					
95% Queue Length, Q ₉₅ (veh)						0.1					0.4					
Control Delay (s/veh)						8.6					15.0					
Level of Service (LOS)						A					С					
Approach Delay (s/veh)						().5			1	5.0					
Approach LOS											С					

	HCS7 Two-W	Vay Stop-Control Report	
General Information		Site Information	
Analyst	MSH	Intersection	5th & Parkland
Agency/Co.	Solaegui Engineers	Jurisdiction	Carson City
Date Performed	6/4/2019	East/West Street	5th Street
Analysis Year	2040	North/South Street	Parkland Avenue
Time Analyzed	AM Base	Peak Hour Factor	0.90
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description			

Vehicle Volumes and Adjustments

Approach		Easth	oound			Westi	bound			North	bound			South	bound	
Movement	U	L	T	R	U	l,	Т	R	U	L	T	R	U	L	T	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		0	1	0		0	0	0
Configuration				TR		L	Т				LR					
Volume (veh/h)			240	10		10	570			20		10				
Percent Heavy Vehicles (%)						2				2		2				
Proportion Time Blocked																
Percent Grade (%)											0					
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadway	ys														
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.12				6.42		5.22				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.22				3.52		3.32				
Delay, Queue Length, an	d Leve	of Se	ervice													
Flow Rate, v (veh/h)			/ 55 -			11					33					
Capacity, c (veh/h)						1285					371					
v/c Ratio						0.01					0.09					
95% Queue Length, Q ₉₅ (veh)						0.0					0.3					
Control Delay (s/veh)						7.8					15.7					
Level of Service (LOS)						A					C					
Approach Delay (s/veh)						0	.1			15	5.7					
							-		_				-			

Approach LOS

C

General Information		Site Information	TO THE PARTY OF TH
Analyst	MSH	Intersection	5th & Parkland
Agency/Co.	Solaegui Engineers	Jurisdiction	Carson City
Date Performed	6/4/2019	East/West Street	5th Street
Analysis Year	2040	North/South Street	Parkland Avenue
Time Analyzed	PM Base	Peak Hour Factor	0.90
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description			

Vehicle Volumes and Ad	justmei	nts														
Approach		Easti	oound			West	bound			North	bound			South	bound	
Movement	U	L	T	R	U	L	T	R	U	L	Т	R	U	L	T	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		0	1	0		0	0	0
Configuration				TR		L	T				LR					
Volume (veh/h)			590	2.0		20	330			20		20				
Percent Heavy Vehicles (%)						2				2		2	100			
Proportion Time Blocked																
Percent Grade (%)											0				,	
Right Turn Channelized			, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,													
Median Type Storage				Undi	vided											
Critical and Follow-up H	leadway	/S							-							
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.12				6.42		6.22				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.22				3.52		3.32				
Delay, Queue Length, an	d Level	of S	ervice													
Flow Rate, v (veh/h)						22					44					
Capacity, c (veh/h)						914					312					
v/c Ratio						0.02					0.14					
95% Queue Length, Q ₉₅ (veh)						0.1					0.5					
Control Delay (s/veh)						9.0					18.4					
Level of Service (LOS)						A					С					
Approach Delay (s/veh)						0	.5			18	3.4					
Approach LOS											c					

HCS7 Two-W	Vay Stop-Control Report	
	Site Information	
MSH	Intersection	5th & Parkland
Solaegui Engineers	Jurisdiction	Carson City
6/4/2019	East/West Street	5th Street
2040	North/South Street	Parkland Avenue
AM Base + Project	Peak Hour Factor	0.90
East-West	Analysis Time Period (hrs)	0.25
	MSH Solaegui Engineers 6/4/2019 2040 AM Base + Project	MSH Intersection Solaegui Engineers Jurisdiction 6/4/2019 East/West Street 2040 North/South Street AM Base + Project Peak Hour Factor

Vehicle Volumes and Ad	justmei	nts														
Approach	T	Easth	bound			Westi	oound			North	bound			South	bound	
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		0	1	0		0	0	0
Configuration				TR		L	Т				LR					
Volume (veh/h)			241	13		12	574			29		15				
Percent Heavy Vehicles (%)						2				2		2				
Proportion Time Blocked																
Percent Grade (%)											0					
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	leadway	/s														
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.12				6.42		6.22				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.22				3.52		3.32				
Delay, Queue Length, an	d Level	of S	ervice													
Flow Rate, v (veh/h)						13					49					
Capacity, c (veh/h)						1280					368					
v/c Ratio						0.01					0.13					
95% Queue Length, Q ₉₅ (veh)						0.0					0.5					
Control Delay (s/veh)						7.8					16.3					
Level of Service (LOS)						А					С					
Approach Delay (s/veh)						0	.2			10	5.3					
Approach LOS																

General Information		Site Information	
Analyst	MSH	Intersection	5th & Parkland
Agency/Co.	Solaegui Engineers	Jurisdiction	Carson City
Date Performed	6/4/2019	East/West Street	5th Street
Analysis Year	2040	North/South Street	Parkland Avenue
Time Analyzed	PM Base + Project	Peak Hour Factor	0.90
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description			
_ +			and the state of t

Vehicle Volumes and Ad	justme	nts														
Approach		Eastl	bound			West	bound			North	bound			South	bound	
Movement	U	L	T	R	U	L	T	R	U	L	Т	R	U	L	T	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	1	1	0		0	1	0		0	0	0
Configuration				TR		L	T				LR					
Volume (veh/h)			593	31		26	333			25		23				
Percent Heavy Vehicles (%)						2				2		2				
Proportion Time Blocked																
Percent Grade (%)											0					
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	leadway	ys														
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.12				5.42		6.22				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.22				3.52		3.32				
Delay, Queue Length, ar	nd Leve	of S	ervice													
Flow Rate, v (veh/h)						29					53					
Capacity, c (veh/h)						902					298					
v/c Ratio						0.03					0.18					
95% Queue Length, Q ₉₅ (veh)						0.1					0.6					
Control Delay (s/veh)						9.1					19.7					
Level of Service (LOS)						A					C					
Approach Delay (s/veh)						0),7			1	9.7					
Approach LOS			-								С					

General Information		Site Information	
Analyst	MSH	Intersection	Little & Parkland
Agency/Co.	Solaegui Engineers	Jurisdiction	Carson City
Date Performed	6/4/2019	East/West Street	Little Lane
Analysis Year	2019	North/South Street	Parkland Avenue
Time Analyzed	AM Existing	Peak Hour Factor	0.90
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description			

Approach		Easth	bound			West	ound			North	bound			South	bound	
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	10	1	2	3.	4U	4	5	6		7	8	9		10	11	13
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration				TR		LT					LR					
Volume (veh/h)			71	3		5	157			21		13				
Percent Heavy Vehicles (%)						2				2		2				
Proportion Time Blocked																
Percent Grade (%)											0					
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	leadway	ys														
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.12				6.42		6.22				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.22				3.52		3.32				
Delay, Queue Length, an	d Level	of S	ervice													
Flow Rate, v (veh/h)						6					38					
Capacity, c (veh/h)						1515					801					
v/c Ratio	1					0.00					0.05					
95% Queue Length, Q ₉₅ (veh)						0.0					0.1					
Control Delay (s/veh)						7.4					9.7					
Level of Service (LOS)						A					А					
Approach Delay (s/veh)						0	.3			9	.7					
Approach LOS											A					

General Information		Site Information	
Analyst	MSH	Intersection	Little & Parkland
Agency/Co.	Solaegui Engineers	Jurisdiction	Carson City
Date Performed	6/4/2019	East/West Street	Little Lane
Analysis Year	2019	North/South Street	Parkland Avenue
Time Analyzed	PM Existing	Peak Hour Factor	0.90
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description			

Vehicle Volumes and Ad	justme	nts														
Approach		Easti	oound			West	oound			North	bound			South	bound	
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration			1	TR		LT					LR					
Volume (veh/h)			181	19		16	113			16		5				
Percent Heavy Vehicles (%)						2				2		2				
Proportion Time Blocked																
Percent Grade (%)											0					
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadway	ys														
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.12				6.42		6.22				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.22				3.52		3.32				
Delay, Queue Length, an	d Level	of S	ervice													
Flow Rate, v (veh/h)						18					23					
Capacity, c (veh/h)						1347					659					
v/c Ratio						0.01					0.04					
95% Queue Length, Q ₉₅ (veh)						0.0					0.1					
Control Delay (s/veh)						7.7					10.7					
Level of Service (LOS)						A					В					
Approach Delay (s/veh)						1	.1			10	0.7					
Approach LOS											B					

General Information		Site Information	
Analyst	MSH	Intersection	Little & Parkland
Agency/Co.	Solaegui Engineers	Jurisdiction	Carson City
Date Performed	6/4/2019	East/West Street	Little Lane
Analysis Year	2019	North/South Street	Parkland Avenue
Time Analyzed	AM Existing + Project	Peak Hour Factor	0.90
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description		-54	

Vehicle Volumes and Ad	justme	nts														
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	T	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		6	74	3		5	167	3		21	0	13		11	0	15
Percent Heavy Vehicles (%)		2				2				2	2	2		2	2	2
Proportion Time Blocked																
Percent Grade (%)											0				0	
Right Turn Channelized															-	
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadway	ys .														
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7,1	6.5	6.2
Critical Headway (sec)		4.12		- TAXAX		4.12				7,12	6.52	6.22		7.12	6.52	6.22
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.22				2,22				3,52	4.02	3.32		3.52	4.02	3.32
Delay, Queue Length, an	d Leve	of Se	ervice													
Flow Rate, v (veh/h)		7				6					38				29	
Capacity, c (veh/h)		1385				1511					730				746	
v/c Ratio		0.00				0.00					0.05				0.04	
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.2				0.1	
Control Delay (s/veh)		7.6				7.4					10.2				10.0	
Level of Service (LOS)		Α				Α					8				В	
Approach Delay (s/veh)		0	.6		0.2			10.2				10.0				
Approach LOS											В			- 2.0	В	

	HCS7 Two-W	ay Stop-Control Report	
General Information		Site Information	
Analyst	MSH	Intersection	Little & Parkland
Agency/Co.	Solaegui Engineers	Jurisdiction	Carson City
Date Performed	6/4/2019	East/West Street	Little Lane
Analysis Year	2019	North/South Street	Parkland Avenue
Time Analyzed	PM Existing + Project	Peak Hour Factor	0.90
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description			

Vehicle Volumes and Ad	justmei	nts														
Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	u	L	T	R
Priority	1 U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		19	190	19		16	120	12		16	0	5		7	0	10
Percent Heavy Vehicles (%)		2				2				2	2	2		2	2	2
Proportion Time Blocked																
Percent Grade (%)											0				0	
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadway	ys														
Base Critical Headway (sec)		4.1				4.1				7,1	6.5	6,2		7.1	6,5	6.2
Critical Headway (sec)		4.12				4.12				7,12	6.52	6.22		7.12	6.52	6.22
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3,5	4.0	3.3
Follow-Up Headway (sec)		2.22				2.22				3.52	4.02	3.32		3.52	4.02	3.32
Delay, Queue Length, an	d Level	of S	ervice													
Flow Rate, v (veh/h)		21				18					23				19	
Capacity, c (veh/h)		1435				1335					555				687	
v/c Ratio		0.01				0.01					0.04				0.03	
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.1				0.1	
Control Delay (s/veh)		7.5				7,7					11,8				10.4	
Level of Service (LOS)		A				Α					В				В	
Approach Delay (s/veh)	0.7 0.9					.9			1	1.8			11	0,4		
Approach LOS										В				В		

Generated: 6/17/2019 4:35:12 PM

	HCS7 Two-V	Vay Stop-Control Report	
General Information		Site Information	
Analyst	MSH	Intersection	Little & Parkland
Agency/Co.	Solaegui Engineers	Jurisdiction	Carson City
Date Performed	6/4/2019	East/West Street	Little Lane
Analysis Year	2040	North/South Street	Parkland Avenue
Time Analyzed	AM Base	Peak Hour Factor	0.90
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description			

Vehicle Volumes and Ad	justme	nts														
Approach	T	Easti	oound			West	opund			North	bound	- /		South	bound	
Movement	U	L	T	R	U	L	T	R	U	Ţ	Т	R	U	L	T	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration				TR		LT					LR					
Volume (veh/h)			80	10		10	190			30		20				
Percent Heavy Vehicles (%)						2				2		2				
Proportion Time Blocked																
Percent Grade (%)											0					-
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.12				6.42		6.22				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.22				3.52		3.32				
Delay, Queue Length, an	d Leve	of S	ervice													
Flow Rate, v (veh/h)						11					56			1		
Capacity, c (veh/h)						1493					756					
v/c Ratio						0.01					0.07					
95% Queue Length, Q ₉₅ (veh)						0.0					0.2					
Control Delay (s/veh)						7.4					10.1					
Level of Service (LOS)						A					В					
Approach Delay (s/veh)						0	4			10	0.1					
	1															

Approach LOS

В

	HCS7 Two-W	Vay Stop-Control Report	
General Information		Site Information	
Analyst	MSH	Intersection	Little & Parkland
Agency/Co.	Solaegui Engineers	Jurisdiction	Carson City
Date Performed	6/4/2019	East/West Street	Little Lane
Analysis Year	2040	North/South Street	Parkland Avenue
Time Analyzed	PM Base	Peak Hour Factor	0.90
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description			A. C.

Vehicle Volumes and Ad	justmei	nts														
Approach	T	East	oound			West	oound			North	bound			South	bound	
Movement	U	L	T	R	U	L	Т	R	U	L	Т	R	U	L	T	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	Ö	1	0	0	0	1	0		0	1	0		0	0	0
Configuration				TR		LT					LR.					
Volume (veh/h)			230	20		20	140			20		10				
Percent Heavy Vehicles (%)						2				2.		2				
Proportion Time Blocked																
Percent Grade (%)											0					
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadway	ys .														
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.12				6.42		6.22				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.22				3.52		3.32				
Delay, Queue Length, an	d Level	of S	ervice													
Flow Rate, v (veh/h)	1					22					33					
Capacity, c (veh/h)						1285					603					
v/c Ratio						0.02					0.06					
95% Queue Length, Q ₉₅ (veh)						0.1					0.2					
Control Delay (s/veh)						7.9					11.3					
Level of Service (LOS)						A					В					
Approach Delay (s/veh)						1	.1			1	1.3					
Approach LOS											В					

	HCS7 Two-V	Vay Stop-Control Report	
General Information	16-20-18-	Site Information	
Analyst	MSH	Intersection	Little & Parkland
Agency/Co,	Solaegui Engineers	Jurisdiction	Carson City
Date Performed	6/4/2019	East/West Street	Little Lane
Analysis Year	2040	North/South Street	Parkland Avenue
Time Analyzed	AM Base + Project	Peak Hour Factor	0.90
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description		- Andrew - A	

ustmer	nts														
	Eastbo	ound			West	oound			North	bound			South	bound	
U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	T	R
1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
0	0	1	0	0	0	1	0		0	1	0		0	1	0
		LTR				LTR				LTR				LTR	
	6	83	10		10	200	3		30	0	20		11	0	15
	2				2				2	2	2		2	2	2
										0				0	
			Undi	vided											
adway	/s														
	4.1				4.1				7.1	6.5	6.2		7.1	6.5	6,2
	4.12				4.12				7.12	6.52	6.22		7,12	6.52	6.22
	2,2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
	2,22				2,22				3.52	4.02	3.32		3.52	4.02	3.32
Level	of Se	rvice													
	7				11					56				29	
	1343				1488					682				689	
	0.00				0,01					0.08				0.04	
	0.0				0.0					0.3				0.1	
	7.7				7.4					10,7				10.5	
	Α				Α					В				8	
0.5 0.4					4		10.7				10.5				
									В				3		
	U 1U 0	U L 1U 1 0 0 6 2 2 4.1 4.12 2.2 2.22 1 Level of Se 7 1343 0.00 0.0 7.7 A	Eastbound U	Eastbound U L T R 1U 1 2 3 0 0 1 0 LTR 6 83 10 2 Undi Padways 4.1 4.12 2.2 2.22 1 Level of Service 7 1343 0.00 0.0 7.7 A	Eastbound U L T R U 1U 1 2 3 4U 0 0 1 0 0 LTR 6 83 10 2 Undivided Padways 4.1 4.12 2.2 2 2.22 1 Level of Service 7 1343 0.00 0.00 7.7 A	Eastbound Wester U L T R U L 1U 1 2 3 4U 4 0 0 1 0 0 0 LTR 6 83 10 10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Eastbound Westbound U	Eastbound Westbound U	Eastbound Westbound	Company	Company	Company	Variable Variable	Eastbound Westbound Northbound South	North-burd South-burd Sou

HCS7 Two-Way Stop-Control Report Site Information **General Information** MSH Little & Parkland Intersection Analyst Solaegui Engineers Jurisdiction Carson City Agency/Co. 6/4/2019 East/West Street Little Lane Date Performed Analysis Year 2040 North/South Street Parkland Avenue 0.90 Time Analyzed PM Base + Project Peak Hour Factor 0.25 Analysis Time Period (hrs) Intersection Orientation East-West **Project Description**

Vehicle Volumes and Ad	justmei	nts				-										
Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	T	R	U	L	T	R	U	L.	T	R	U	L	T	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		19	239	20		20	147	12		20	0	10		7	0	10
Percent Heavy Vehicles (%)		2				2				2	2	2		2	2	2
Proportion Time Blocked																
Percent Grade (%)											0				0	
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	leadwa	ys														
Base Critical Headway (sec)		4,1				4.1				7.1	6.5	6.2		7.1	6,5	6,2
Critical Headway (sec)		4.12				4.12				7.12	6.52	6.22		7.12	6.52	6.22
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3,3		3.5	4.0	3,3
Follow-Up Headway (sec)		2.22				2.22				3.52	4.02	3.32		3.52	4.02	3.32
Delay, Queue Length, an	d Leve	i of S	ervice													
Flow Rate, v (veh/h)		21				22					33				19	
Capacity, c (veh/h)		1399				1274					508				617	
v/c Ratio		0.02				0.02					0.07				0.03	
95% Queue Length, Q ₉₅ (veh)		0.0				0.1			1		0,2				0.1	
Control Delay (s/veh)		7.6				7.9					12.6				11.0	
Level of Service (LOS)		Α				A					В				В	
Approach Delay (s/veh)	0.6					1.0 12.6						11.0				
Approach LOS							В					В				

General Information		Site Information	
Analyst	MSH	Intersection	Little & Spartan
Agency/Co.	Solaegui Engineers	Jurisdiction	Carson City
Date Performed	6/4/2019	East/West Street	Little Lane
Analysis Year	2019	North/South Street	Spartan Avenue
Time Analyzed	AM Existing	Peak Hour Factor	0.90
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description			

Vehicle Volumes and Ad	justmei	nts														
Approach		Eastb	ound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration				TR		LT					LR					
Volume (veh/h)			82	2		11	158			4		11				
Percent Heavy Vehicles (%)						2				2		2				
Proportion Time Blocked																
Percent Grade (%)											0					
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadway	/s														
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)	1					4.12				6.42		6.22				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.22				3.52		3.32				
Delay, Queue Length, an	d Level	of S	ervice													
Flow Rate, v (veh/h)						12					17					
Capacity, c (veh/h)						1501					873					
v/c Ratio						0.01					0.02					
95% Queue Length, Q ₉₅ (veh)						0.0					0.1					
Control Delay (s/veh)						7.4					9.2					
Level of Service (LOS)		4				A					A					
Approach Delay (s/veh)						0	.5			9	.2					S.
Approach LOS											A					

	HCS7 Two-V	Vay Stop-Control Report	
General Information		Site Information	
Analyst	MSH	Intersection	Little & Spartan
Agency/Co.	Solaegui Engineers	Jurisdiction	Carson City
Date Performed	6/4/2019	East/West Street	Little Lane
Analysis Year	2019	North/South Street	Spartan Avenue
Time Analyzed	PM Existing	Peak Hour Factor	0.90
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description			

Vehicle Volumes and Ad	justmei	nts														
Approach		Eastl	oound			West	oound			North	bound			South	bound	
Movement	u	L	T	R	U	L	T	R	U	L	T	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration				TR		LT					LR				-	
Volume (veh/h)			174	12		17	117			12		9				
Percent Heavy Vehicles (%)						2				2		2				
Proportion Time Blocked																
Percent Grade (%)											0					
Right Turn Channelized	1															
Median Type Storage	-			Undi	vided											
Critical and Follow-up H	eadway	/s														
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.12				6.42		6.22				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.22				3.52		3.32				
Delay, Queue Length, an	d Level	of S	ervice													
Flow Rate, v (veh/h)						19					23					
Capacity, c (veh/h)						1365					701					
v/c Ratio						0.01					0.03					
95% Queue Length, Q ₉₅ (veh)						0.0					0.1					
Control Delay (s/veh)						7.7					10.3					
Level of Service (LOS)						А					В					
Approach Delay (s/veh)						1	.1			10	0.3			4/		
Approach LOS											B					

General Information		Site Information	
Analyst	MSH	Intersection	Little & Spartan
Agency/Co.	Solaeguì Engineers	Jurisdiction	Carson City
Date Performed	6/4/2019	East/West Street	Little Lane
Analysis Year	2019	North/South Street	Spartan Avenue
Time Analyzed	AM Existing + Project	Peak Hour Factor	0.90
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description			

Vehicle Volumes and Adj	justmer	nts														
Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	T	R	U	L	Т	R	U	L	I	R	U	L	T	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		3	93	2		11	161	7		4	. 0	11		21	0	10
Percent Heavy Vehicles (%)		2				2				2	2	2		2	2	2
Proportion Time Blocked																
Percent Grade (%)						-					0				0	
Right Turn Channelized																
Median Type Storage				Undi	vided						7					
Critical and Follow-up H	eadway	' S														
Base Critical Headway (sec)		4.1				4.1				7.1	6,5	6.2		7,1	6.5	6.2
Critical Headway (sec)		4.12				4.12				7.12	6.52	6.22		7.12	6.52	6.22
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3,3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.22				2.22				3.52	4.02	3,32		3.52	4.02	3.32
Delay, Queue Length, an	d Level	of Se	rvice												-	
Flow Rate, v (veh/h)		3				12					17				34	
Capacity, c (veh/h)		1388				1486					830				677	
v/c Ratio		0.00				0.01					0.02				0.05	
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.1				0.2	
Control Delay (s/veh)		7.6				7.4					9.4				10.6	
Level of Service (LOS)		A				Α					А				В	
Approach Delay (s/veh)		0.	3			0	5			9	4			10	0.6	
Approach LOS											4				В	

		ay Stop-Control Report	
General Information		Site Information	
Analyst	MSH	Intersection	Little & Spartan
Agency/Co.	Solaegui Engineers	Jurisdiction	Carson City
Date Performed	6/4/2019	East/West Street	Little Lane
Analysis Year	2019	North/South Street	Spartan Avenue
Time Analyzed	PM Existing + Project	Peak Hour Factor	0.90
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description			

Vehicle Volumes and Adj	justme	nts														
Approach	T	Eastb	ound			West	oound			North	bound			South	bound	
Movement	Ü	L	T	R	U	L	T	R	U	L	Т	R	U	L	T	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		9	181	12		17	129	23		12	0	9		14	0	7
Percent Heavy Vehicles (%)		2				2				2	2	2		2	2	2
Proportion Time Blocked																
Percent Grade (%)											0				0	
Right Turn Channelized																
Median Type Storage				Undi	ivided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7,1	6.5	6.2
Critical Headway (sec)		4.12				4.12				7.12	6.52	6.22		7.12	6.52	6.22
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2,22				2.22				3.52	4.02	3.32		3.52	4.02	3.32
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)		10				19					23				23	
Capacity, c (veh/h)		1409				1356			la,		624				606	
v/c Ratio		0.01				0.01					0.04				0.04	
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.1				0.1	
Control Delay (s/veh)		7.6				7.7					11.0				11.2	
Level of Service (LOS)		Α				A					В				В	
Approach Delay (s/veh)		C	.4			C	.9			1	1.0			1	1.2	
Approach LOS											В				В	

Generated: 6/17/2019 4:40:04 PM

General Information		Site Information	
Analyst	MSH	Intersection	Little & Spartan
Agency/Co.	Solaegui Engineers	Jurisdiction	Carson City
Date Performed	6/4/2019	East/West Street	Little Lane
Analysis Year	2040	North/South Street	Spartan Avenue
Time Analyzed	AM Base	Peak Hour Factor	0.90
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description			

Vehicle Volumes and Ad	justme	nts														
Approach		Easth	oound			Westl	oound			North	bound			South	bound	
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	Т	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration				TR		LT					LR					
Volume (veh/h)			90	10		20	190			10		20				
Percent Heavy Vehicles (%)						2				2		2				
Proportion Time Blocked																
Percent Grade (%)			A								0					
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadway	/S														
Base Critical Headway (sec)						4.1				7.1		6.2				
Critical Headway (sec)						4.12				6.42		6.22				
Base Follow-Up Headway (sec)						2.2				3.5		3.3				
Follow-Up Headway (sec)						2.22				3.52		3.32				
Delay, Queue Length, an	d Level	of Se	ervice													
Flow Rate, v (veh/h)						22					33					
Capacity, c (veh/h)						1479					810					
v/c Ratio						0.02					0.04					
95% Queue Length, Q ₉₅ (veh)						0.0					0.1					
Control Delay (s/veh)						7.5					9.6					
Level of Service (LOS)						A					А					
Approach Delay (s/veh)						0.	8			9	.6					

Approach LOS

General Information		Site Information						
Analyst	MSH	Intersection	Little & Spartan					
Agency/Co.	Solaegui Engineers	Jurisdiction	Carson City					
Date Performed	6/4/2019	East/West Street	Little Lane					
Analysis Year	2040	North/South Street	Spartan Avenue					
Time Analyzed	PM Base	Peak Hour Factor	0.90					
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25					
Project Description								

Lanes

1-6:-1-	Malina	 A diam	 -4-		

Approach		Eastl	pound			West	bound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration				TR		LT					LR					
Volume (veh/h)			220	20		20	140			20		10				
Percent Heavy Vehicles (%)						2				2		2				
Proportion Time Blocked																
Percent Grade (%)											0					
Right Turn Channelized																
Median Type Storage				Und	vided											
Critical and Follow-up	Headwa	ys														
Base Critical Headway (sec)						4.1				7.1		6.2				
						1										

Base Critical Headway (sec)	4.1	7.1	6.2	
Critical Headway (sec)	4.12	6.42	6.22	
Base Follow-Up Headway (sec)	2.2	3.5	3.3	
Follow-Up Headway (sec)	2.22	3.52	3,32	

Delay, Queue Length, and Level of Service

Flow Rate, v (veh/h)	22	33	
Capacity, c (veh/h)	1297	612	
v/c Ratio	0.02	0.05	
95% Queue Length, Q ₉₅ (veh)	0.1	0.2	
Control Delay (s/veh)	7.8	11.2	
Level of Service (LOS)	A	В	
Approach Delay (s/veh)	1.1	11.2	
Approach LOS		В	

	HCS7 Two-V	Vay Stop-Control Report	
General Information		Site Information	
Analyst	MSH	Intersection	Little & Spartan
Agency/Co,	Solaeguì Engineers	Jurisdiction	Carson City
Date Performed	6/4/2019	East/West Street	Little Lane
Analysis Year	2040	North/South Street	Spartan Avenue
Time Analyzed	AM Base + Project	Peak Hour Factor	0.90
Intersection Orientation	East-West	Analysis Time Períod (hrs)	0.25
Project Description			

Lanes

Vehicle Volumes and Ad	justme	nts		-													
Approach	1	Eastb	ound			West	oound		T	North	bound			South	bound		
Movement	U	L	T	R	U	L	Т	R	U	L	T	R	Ü	L	T	R	
Priority	10	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0	
Configuration			LTR				LTR				LTR				LTR		
Volume (veh/h)		3	111	10		20	193	7		10	0	20		21	0	10	
Percent Heavy Vehicles (%)		2				2				2	2	2		2	2	2	
Proportion Time Blocked																	
Percent Grade (%)										-	0		0				
Right Turn Channelized																	
Median Type Storage				Undi	vided	- XX											
Critical and Follow-up H	eadway	ys															
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6,2		7.1	6.5	6.2	
Critical Headway (sec)		4.12				4.12				7,12	6.52	6.22		7.12	6.52	6.22	
Base Follow-Up Headway (sec)		2,2				2.2				3.5	4.0	3.3		3,5	4.0	3.3	
Follow-Up Headway (sec)		2.22				2.22				3.52	4.02	3.32		3.52	4.02	3.32	
Delay, Queue Length, an	d Level	of Se	ervice														
Flow Rate, v (veh/h)		3				22				Γ	33				34		
Capacity, c (veh/h)		1347				1450					746				599		
v/c Ratio		0.00				0.02					0.04				0.06		
95% Queue Length, Q ₉₅ (veh)		0.0				0,0			177		0.1				0.2		
Control Delay (s/veh)		7.7				7.5					10.0				11.4		
Level of Service (LOS)		Α				A					В				В		
Approach Delay (s/veh)		0.	2			0.	8			10	0.0		11.4				
Approach LOS										[3				В		

General Information		Site Information						
Analyst	MSH	Intersection	Little & Spartan					
Agency/Co.	Solaegui Engineers	Jurisdiction	Carson City					
Date Performed	6/4/2019	East/West Street	Little Lane					
Analysis Year	2040	North/South Street	Spartan Avenue					
Time Analyzed	PM Base + Project	Peak Hour Factor	0.90					
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25					
Project Description								

Lanes

Vehicle Volumes and Adj	justine	IILS														
Approach		Eastb	oound			West	oound			North	bound			South	bound	
Movement	U	L	T	R	U	L	T	R	U	L	T	R	U	L	T	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		9	227	20		20	152	23		20	0	10		14	0	7
Percent Heavy Vehicles (%)		2				2				2	2	2		2	2	2
Proportion Time Blocked																
Percent Grade (%)											0				0	
Right Turn Channelized																
Median Type Storage				Undi	vided			-								
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)		4,1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.12				4.12				7.12	6.52	6.22		7.12	6.52	6.22
Base Follow-Up Headway (sec)		2.2				2.2				3,5	4.0	3.3		3.5	4.0	3,3
Follow-Up Headway (sec)		2,22				2.22				3.52	4.02	3.32		3.52	4.02	3.32
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)		10				22					33				23	
Capacity, c (veh/h)		1379				1289					530				539	
v/c Ratio		0.01				0,02					0.06				0.04	
95% Queue Length, Q ₉₅ (veh)		0.0				0.1					0.2				0.1	
Control Delay (s/veh)		7.6				7.8					12.3				12.0	
Level of Service (LOS)		А				А					В				В	
Approach Delay (s/veh)		C).3			0	9			1:	2.3		12.0			
Approach LOS											В				В	

PRELIMINARY SEWER REPORT

FOR

LITTLE LANE VILLAGE

CARSON CITY, NEVADA

Prepared for:

Bates Homes 9460 Double R Blvd., Suite 103 Reno, Nevada 89521

Prepared by:

Manhard Consulting Ltd. 9850 Double R Boulevard Suite 101 Reno, Nevada 89521

Project: BHOCCNV01 Date: June 19, 2019

Table of Contents

1	INTRODUCTION	1
	PROPOSED ALIGNMENT AND QUANTITY OF SERVICE	
	CONCLUSION	2

Appendices

APPENDIX A - FLOWMASTER FLOW DATA

<u>Figures</u>

FIGURE 1 – VICINITY MAP

FIGURE 2 – SEWER DISPLAY MAP

260

1 INTRODUCTION

1.1 Purpose of Analysis

This report represents a detailed analysis of the proposed sanitary sewer system for Little Lane Village. The purpose of this analysis is to establish peak flow rates and evaluate proposed sanitary sewer sizes for the subject property.

1.2 Project Location and Description

The proposed Little Lane Village development is approximately 21.48 acres in size and located in the southern portion of Carson City and is east of South Stewart Street, south of East 5th Street, west of South Saliman Road Drive, and north of Little Lane. The proposed project site is situated within Section 17, Township 15 North, and Range 20 East of the Mount Diablo Meridian (refer to Figure 1, Vicinity Map). The project site is within the existing parcels 004-021-09 and 004-021-14.

Figure 2, the Sewer Main Layout, illustrates the location and orientation of the project and its proposed lots and roadway locations.

1.3 Project Description

The Little Lane Village development is a proposed subdivision which consists of 149 single-family residential units. The project site is currently zoned MFD.

2 PROPOSED ALIGNMENT AND QUANTITY OF SERVICE

2.1 Project Wastewater Collection System

Sewage flow from Little Lane Village will be conveyed via public 8" diameter PVC SDR-35 sewer mains to the collection point (manhole) located at the southern entrance of the development at Spartan Avenue and Little Lane. The sanitary sewer main within the development flows south to the connection of the existing 18-inch sanitary sewer located in Little Lane. All of the mains within the proposed subdivision are located within the rights-of-way of the local roadways. The proposed sizes and locations of the sanitary sewers can be found on the *Sanitary Sewer Plan*, which is included in this report.

The minimum and maximum proposed slopes used within this development is 0.50%. The slope has been checked to ensure that it is within the Carson City required velocity of 2 fps and 10 fps during the peak flow condition.

2.2 Estimated Peak Sewage Flows

Calculations for the design of the sewer system were performed in accordance with Chapter 10, Section 11.243 of the <u>Recommended Standards for Wastewater Facilities (10-State Standards)</u>, 2014 Edition and Division 15, Section 15.3.2 of the <u>Carson City Development Standards</u> and Carson City's <u>Sewer System Master Plan Update</u>, July 2017, by Atkins. According to analysis, the actual per capita flow was 148 gal/cap/day with a peaking factor ranging from 1.5 – 6.0 in wet weather conditions. Table 1 in the 10-State Standards suggests

using a peaking factor of 2.5 based on the population of Carson City, Nevada. For this analysis, the flow factors used in the calculations are 2.5 capita per dwelling unit for a single-family residential lot and 150 gal/cap/day to calculate average daily flow. A peaking factor of 2.5 is then applied to the daily average flow to compute the peak flow used in the design of the sanitary sewer. Complete peak flow calculations for Little Lane Village are included within this report. The following table summarizes the results of the calculations of the peak daily flows for the residential subdivision:

Units	Capita/DU	GPD/ Capita	Peaking Factor	Peak Flow (gpd)	Peak Flow (cfs)
149	2.5	150	2.5	139,688	0.22
			Total	139,688	0.22

2.3 Proposed Sewer Mains

Basic normal depth calculations for the proposed 8-inch sewer mains were done using open-channel pipe flow theory, the Manning's Formula, and *Bentley FlowMaster*® *V8i*® (*FlowMaster*) software. A Manning's Coefficient of 0.013 (assuming PVC pipe material) was used in all of these calculations. The *FlowMaster* worksheets that demonstrate these calculations are included within this report (Appendix A).

Per <u>Carson City Development Standards</u>, sewer mains are considered at capacity when peak flow is at d/D=0.50 for sewer mains that are 15" or less in diameter (Div. 15, Section 15.3.2.a.). In addition, the minimum velocity of 2 fps and the maximum velocity of 10 fps are required design conditions (Div 15, Section 15.3.2.e.). The *FlowMaster* calculations included within this report demonstrate that the various velocities of PVC sewer pipe at a d/D of 50% at the minimum and maximum slopes mentioned above are within the requirements for Carson City. The velocity of an 8-inch sewer main is 2.45 fps for a minimum pipe slope of 0.50%. All of the calculated velocities described above are within the Carson City required ranged of 2 fps to 10 fps. These velocity calculations can be found in the *FlowMaster* calculations included within this report.

In addition to evaluating the sewer velocities within this development, this report also analyzes maximum capacity within the proposed sewer pipes. As described above, the peak flow within the sewer main must remain at or below a normal depth of 50%. As shown in the *FlowMaster* calculations included within this report, an 8-inch PVC sewer at 0.50% can convey 276,116 gpd (0.43 cfs) at a maximum depth of 50%. Therefore, the contribution by the proposed Little Lane Village will be less than the 50% full capacity requirement, and the contribution will be 139,688 gpd (0.22 cfs), which is less than the maximum allowed capacity of an 8-inch sewer. The size and locations of the proposed sanitary sewers mentioned above can be found on the *Sanitary Sewer Plan*, which is included in this report.

3 CONCLUSION

The 8-inch sanitary sewer mains proposed herein will adequately serve the project as planned. The attached *FlowMaster* worksheet calculates the maximum capacity of the proposed 8-inch sewer mains at a minimum slope of 0.50% in accordance with the requirements of Carson City. The 8-inch sewer main at 0.50% have a capacity of 276,116 gpd (0.43 cfs) at a maximum depth of 50%, which will be able to adequately serve Little Lane Village.

The proposed sanitary sewerage system within this report for the Little Lane Village development has adequate capacity to carry the subject property's peak sewage flow in conformance with the guidelines outlined in the <u>Carson City Development Standards</u> and the <u>Recommended Standards for Wastewater Facilities (10-State Standards)</u>, 2014, and the <u>Sewer System Master Plan Update</u>, July 2017, by Atkins.

SANITARY SEWER CALCULATIONS FOR LITTLE LANE VILLAGE

The following calculations were performed in accordance with Chapter 10, Section 11.243 of the Recommended Standards for Wastewater Facilities, 2014 ed. (Ten-States Standards), Carson City Development Standards, and the Sewer System Master Plan Update, July 2017, by Atkins:

2.5 capita/dwelling unit 150 gal/capita/day

The site will consist of 149 dwelling units; therefore, the following equations are used:

Average flow = num. of dwellings * capita/dwelling * GPCD

Average flow = 149 * 2.5 * 150 = 55,875 gpd = 0.09 cfs

Peak flow = Average flow * peaking factor

Peaking Factor = $(18 + P^{1/2}) / (4+P^{1/2})$ where P = population in thousands (or use value off Table 1 based on population). The maximum peaking factor is 4.2 according to Table 1 in the 10-State Standards. Based on the population of Carson City, Nevada, a peaking factor of 2.5 is acceptable.

Peak flow = 55,875 * 2.5 = 139,688 gpd = 0.22 cfs

The design shall be for the peak flow; therefore, the design flow is 0.22 cfs.

APPENDIX A

FlowMaster Flow Data

	Worksheet for 8	" Sewei	at 0.50%
Project Description			
Friction Method	Manning Formula		
Solve For	Discharge		
Input Data			
Roughness Coefficient		0.013	
Channel Slope		0.00500	ft/ft
Normal Depth		4.00	in
Diameter		8.00	in
Results			
Discharge		276116.36	gal/day
Flow Area		0.17	ft²
Wetted Perimeter		1.05	ft
Hydraulic Radius		2.00	in
Top Width		0.67	ft
Critical Depth		3.66	in
Percent Full		50.0	%
Critical Slope		0.00680	ft/ft
Velocity		2.45	ft/s
Velocity Head		0.09	ft
Specific Energy		0.43	ft
Froude Number		0.84	
Maximum Discharge		0.92	ft³/s
Discharge Full		0.85	ft³/s
Slope Full		0.00125	ft/ft
Flow Type	SubCritical		
GVF Input Data			
Downstream Depth		0.00	in
Length		0.00	ft
Number Of Steps		0	
GVF Output Data			
Upstream Depth		0.00	in
Profile Description			
Profile Headloss		0.00	ft
Average End Depth Over Rise		0.00	%
Normal Depth Over Rise		50.00	%
Downstream Velocity		Infinity	ft/s

Worksheet for 8" Sewer at 0.50%

GVF Output Data

Upstream Velocity	Infinity	ft/s
Normal Depth	4.00	in
Critical Depth	3.66	in
Channel Slope	0.00500	ft/ft
Critical Slope	0.00680	ft/ft

PRELIMINARY WATER MAIN ANALYSIS REPORT

FOR

LITTLE LANE VILLAGE

CARSON CITY, NEVADA

Prepared for:

Mr. Fred Bates
Bates Homes
9460 Double R Boulevard, Suite 103
Reno, Nevada 89521

Prepared by:

Manhard Consulting Ltd. 241 Ridge Street, Suite 400 Reno, Nevada 89501

Table of Contents

1	INTRODUCTION
	PROPOSED ALIGNMENT AND QUANTITY OF SERVICE
	CONCLUSION 2

Appendices

Appendix A – WaterGEMS Outlet Appendix B – Fire Flow Data

List of Figures

Figure 1 – Vicinity Map Figure 2 – Water Main Layout

List of Tables

Table 1 – Little Lane Village Pressure Summary

271

Manhard Consulting, Ltd. i 6/20/2019
Project #: BHOCCNV01

1 <u>INTRODUCTION</u>

1.1 Purpose of Analysis

This report represents a preliminary analysis of the proposed water main system for the Little Lane Village. The report describes the water system and the criteria used for design. The purpose of this analysis is to establish the adequacy of the proposed water main pipe diameters and layout to meet the needs of the development.

1.2 Project Location and Description

The Little Lane Village development is approximately 21.48 acres in size and is located in the southern portion of Carson City and is east of South Stewart Street, south of East 5th Street, west of South Saliman Road Drive, and north of Little Lane. Formally, this site is situated within Southeast ½ of Southeast ½ of Section 17, Township 15 North, and Range 20 East of the Mount Diablo Meridian (refer to Figure 1, Vicinity Map). The project site is within the existing parcels 004-021-09 & 044-021-14.

Figure 2, the Water Main Layout, illustrates the location and orientation of the project and its proposed lots and roadway locations.

1.3 Project Description

The Little Lane Village development is a proposed subdivision which consists of 149 single-family residential units. The project site is currently zoned within the MFD zoning district. For purposes of this water main analysis the average lot size for this development is taken to be approximately 3,183 sf.

1.4 Methodologies

The Little Lane Village water main analysis was analyzed using WaterGEMS, which employs the Hazen-Williams Method to determine headloss. The Hazen-Williams formula uses a pipe carrying capacity factor (C) based on piping materials. For the Little Lane Village analysis, a C-value of 150 was used to model the proposed water main system.

2 PROPOSED ALIGNMENT AND QUANTITY OF SERVICE

2.1 Project Water Main System

Five connection points to the existing water system are being utilized for this project. Two connection points occur on Little Lane to the south of the project site on Parkland Avenue and Spartan Avenue. The other three connections are to the north of the project on Parkland Avenue, Ruth Street, and Elaine Street. At these points, a proposed 8" water main will connect to an existing stub or be teed in at a 90-degree bend in the water main. This will loop the existing 8" water mains that surround the property. The Little Lane Village development will be served by 8" water main that creates a water system loop for the project (refer to Figure 2, Water Main Layout).

272

273

2.2 Water Main Analysis

Pressure test data was provided by Carson City with the water main analysis of Arbor Villas. This hydrant test is located on Parkland Avenue, Coronet Way, and Fleetwood Avenue. See Appendix B for the Fire Flow Data. Phase 1 of Arbor Villas was set as existing and Little Lane Village was set as proposed for this water main analysis.

The average per lot demand (1.5 gpm/unit) used in the analysis of the water main system from NAC 445A.66735. A maximum day demand factor of 2.0 was applied to the average day demand to obtain the maximum day demand (per *Tentative Addendum*). The peak hour demand was calculated by applying a 1.5 global demand multiplier to the maximum day demands.

Irrigation demands are not known at this time for the park located in the northeast corner of the development. An assumed demand of 2 gpm will be used for the irrigation meter based on Arbor Villas irrigations demands to the west. This is an estimate and will be adjusted in final design.

In a separate analysis, a 1500 gpm fire flow requirement was applied to the farthest hydrant in the system from the connection points. This 1500 gpm fire flow requirement was obtained from Section B105 and Table B105.1 of the 2012 International Fire Code. As a conservative analysis, it was assumed that all of the irrigation zones were active at the same time.

The following table provides the high and low pressures that were calculated using WaterGEMS (refer to Appendix A for WaterGEMS output) for each demand condition:

Condition	High Pressure (psi)	Low Pressure (psi)
Max Day	91	88
Peak Hour	90	87
Fire Flow (farthest hydrant)	80	69

Table 1: Little Lane Village Pressure Summary

The maximum day demand low pressure of 91 psi is above the NAC minimum of 40 psi. The peak hour demand low pressure is above the minimum of 64 psi listed in the *Carson City Development Standards*. The pressure for the various scenarios can be found in the WaterGEMS output included in Appendix A of this report. The fire flow low pressures indicated in the table above are well above the NAC minimum requirement of 20 psi. The pressure at the hydrant HYD-06 can be found in the WaterGEMS output included in Appendix A of this report.

3 <u>CONCLUSION</u>

The analysis of the water system shows that the pipe sizes and layouts within Little Lane Village are adequately designed to meet the demands of the development. The WaterGEMS analysis shows that the pressures are greater than the minimum requirement and below the maximum requirement for Carson City and the NAC requirements. Little Lane Village

complies and meets the minimum pressures per NAC 445A.6711 during maximum day, peak hour, and fire flow conditions.

274

WATER DEMAND CALCULATIONS FOR LITTLE LANE VILLAGE

Number of units = 149 Average per lot demand = 1.5 gpm/lot Maximum day demand factor = 2.0 Peak hour global demand multiplier = 1.5

Average demand = 149*1.5 = 223.5 gpm Maximum day demand = 223.5*2.0 = 447.0 gpm Peak hour demand = 447.0*1.5 = 670.5 gpm

Scenario: ADD XJ-13 XJ-14 XFV-03 XHYD-04 XP-118 XHYD-01 ₹ XHYD-02 ఏ**∲** XJ-02 XJ-01 PJ-04

Figure 2: Water Main Layout

APPENDIX A

Scenario Summary Report Scenario: ADD

Scenario Summary							
ID		76					
Label		ADD					
Notes							
Active Topology		<i> Base Act</i>	tive Topology				
Physical		<i> Base Phy</i>	ysical				
Demand		ADD					
Initial Settings		<i> Base Ini</i>	tial Settings				
Operational		<i> Base Op</i>	erational				
Age		<i> Base Ag</i>	e				
Constituent		<i> Base Co</i>	nstituent				
Trace		<i> Base Tra</i>	ace				
Fire Flow		<i>> Base Fire</i>	e Flow				
Energy Cost		<i>> Base End</i>	ergy Cost				
Transient		<i> Base Tra</i>	<i>> Base Transient</i>				
Pressure Dependent Deman	d	<i>> Base Pre</i>	<i>> Base Pressure Dependent Demand</i>				
Failure History		<i> Base Fai</i>	<i>> Base Failure History</i>				
SCADA		<i> Base SCADA</i>					
User Data Extensions		<i>> Base User Data Extensions</i>					
Steady State/EPS Solver Cal Options	culation	AVERAGE DA	AVERAGE DAY				
Transient Solver Calculation	Options	<i> Base Cal</i>	culation Options				
Hydraulic Summary			<u> </u>				
Time Analysis Type	Stead	ly State	Use simple controls during steady state?	True			
Friction Method	١	Hazen- Villiams	Is EPS Snapshot?	False			
Accuracy		0.001	Start Time	12:00:00 AM			
Trials		40	Calculation Type	Hydraulics Only			

FlexTable: Junction Table

Label	ID	Zone	Elevation	Demand	Hydraulic	Pressure
			(ft)	(gpm)	Grade	(psi)
					(ft)	
PJ-01	248	<none></none>	4,640.80	12.0	4,849.90	90
PJ-01A	188	<none></none>	4,640.50	0.0	4,849.84	91
PJ-02	210	<none></none>	4,639.30	16.5	4,849.75	91
PJ-03	212	<none></none>	4,638.20	16.5	4,849.70	92
PJ-04	214	<none></none>	4,638.20	0.0	4,849.70	92
PJ-05	218	<none></none>	4,637.50	0.0	4,849.68	92
PJ-06	220	<none></none>	4,637.70	33.0	4,849.68	92
PJ-07	222	<none></none>	4,639.60	34.5	4,849.69	91
PJ-08	190	<none></none>	4,641.60	0.0	4,849.74	90
PJ-09	192	<none></none>	4,641.80	3.0	4,849.73	90
PJ-10	194	<none></none>	4,642.80	19.5	4,849.72	90
PJ-11	196	<none></none>	4,642.90	0.0	4,849.72	89
PJ-12	198	<none></none>	4,644.20	0.0	4,849.71	89
PJ-13	231	<none></none>	4,645.00	0.0	4,849.71	89
PJ-14	234	<none></none>	4,643.00	0.0	4,849.71	89
PJ-15	236	<none></none>	4,643.00	0.0	4,849.71	89
PJ-16	200	<none></none>	4,643.50	0.0	4,849.71	89
PJ-17	202	<none></none>	4,641.50	37.5	4,849.65	90
PJ-18	204	<none></none>	4,639.20	40.5	4,849.65	91
PJ-19	206	<none></none>	4,638.90	3.0	4,849.65	91
PJ-20	227	<none></none>	4,638.60	7.5	4,849.65	91
PJ-21	225	<none></none>	4,638.40	2.0	4,849.66	91
XFV-01	117	<none></none>	4,646.00	0.0	4,850.05	88
XFV-02	125	<none></none>	4,646.50	19.5	4,850.05	88
XFV-03	126	<none></none>	4,647.00	12.0	4,850.06	88
XFV-04	127	<none></none>	4,646.50	33.0	4,850.03	88
XFV-05	121	<none></none>	4,645.00	0.0	4,850.04	89
XJ-01	107	<none></none>	4,642.70	0.0	4,850.33	90
XJ-02	112	<none></none>	4,643.50	0.0	4,850.20	89
XJ-03	30	<none></none>	4,643.50	0.0	4,850.15	89
XJ-04	101	<none></none>	4,644.50	0.0	4,850.15	89
XJ-05	96	<none></none>	4,644.50	0.0	4,850.15	89
XJ-06	31	<none></none>	4,642.00	79.4	4,850.06	90
XJ-07	55	<none></none>	4,646.00	3.0	4,850.05	88
XJ-08	124	<none></none>	4,643.00	19.5	4,850.05	90
XJ-09	33	<none></none>	4,640.00	6.0	4,850.04	91
XJ-10	123	<none></none>	4,645.00	19.5	4,850.04	89
XJ-11	186	<none></none>	4,640.70	0.0	4,849.84	90
XJ-12	216	<none></none>	4,638.20	0.0	4,849.70	92
XJ-13	159	<none></none>	4,644.90	0.0	4,849.71	89
XJ-14	238	<none></none>	4,643.00	0.0	4,849.71	89
XJ-15	208	<none></none>	4,642.20	0.0	4,849.65	90

FlexTable: Pipe Table

Label	Length (Scaled) (ft)	Start Node	Stop Node	Diameter (in)	Flow (Absolute)	Velocity (ft/s)
					(gpm)	
PP-01	372	XJ-01	PJ-01	8.0	225.5	1.44
PP-02	21	PJ-01	HYD-01	6.0	0.0	0.00
PP-03	50	PJ-01	XJ-11	8.0	213.5	1.36
PP-04	6	XJ-11	PJ-01A	8.0	213.5	1.36
PP-05	403	PJ-01A	PJ-02	8.0	89.0	0.57
PP-06	14	PJ-02	HYD-02	6.0	0.0	0.00
PP-07	377	PJ-02	PJ-03	8.0	72.5	0.46
PP-08	42	PJ-03	PJ-04	8.0	0.0	0.00
PP-09	8	PJ-04	XJ-12	8.0	0.0	0.00
PP-10	215	PJ-03	PJ-05	8.0	56.0	0.36
PP-11	19	PJ-05	HYD-05	6.0	0.0	0.00
PP-12	40	PJ-05	PJ-06	8.0	56.0	0.36
PP-13	377	PJ-06	PJ-07	8.0	32.4	0.21
PP-14	20	PJ-07	HYD-04	6.0	0.0	0.00
PP-15	403	PJ-07	PJ-08	8.0	66.9	0.43
PP-16	255	PJ-01A	PJ-08	8.0	124.5	0.79
PP-17	50	PJ-08	PJ-09	8.0	57.6	0.37
PP-18	20	PJ-09	HYD-03	6.0	0.0	0.00
PP-19	187	PJ-09	PJ-10	8.0	54.6	0.35
PP-20	32	PJ-10	PJ-11	8.0	35.1	0.33
PP-21	253	PJ-11	PJ-12	8.0	35.1	0.22
PP-22	39	PJ-12	PJ-16	8.0	35.1	0.22
PP-23	152	PJ-12	PJ-10	8.0	0.0	0.22
PP-24	393	PJ-12	PJ-13	8.0	0.0	0.00
PP-25	40	PJ-13 PJ-14	PJ-14 PJ-15	8.0	0.0	0.00
PP-25		PJ-14 PJ-15				
PP-26 PP-27	45		XJ-14	8.0	0.0	0.00
PP-27 PP-28	19	PJ-16	HYD-06	6.0	0.0	0.00
1	402	PJ-16	PJ-17	6.0	35.1	0.40
PP-29 PP-30	19	PJ-17	HYD-07	6.0	0.0	0.00
PP-30 PP-31	446	PJ-17	PJ-18	8.0	2.4	0.02
1	20	PJ-18	HYD-08	6.0	0.0	0.00
PP-32	56	PJ-18	PJ-19	8.0	42.9	0.27
PP-33	61	PJ-20	PJ-19	8.0	45.9	0.29
PP-34	51	PJ-21	PJ-20	8.0	53.4	0.34
PP-35	240	PJ-06	PJ-21	8.0	55.4	0.35
PP-36		PJ-19	XJ-15	8.0	0.0	0.00
XP-01	55	I	XJ-01	8.0	417.4	2.66
XP-02	150		XJ-02	8.0	191.9	1.22
XP-03	24	1	XHYD-02	6.0	0.0	0.00
XP-04	54		XJ-03	8.0	191.9	1.22
XP-05	306	l	XJ-04	8.0	0.0	0.00
XP-06	40	XJ-04	XJ-05	8.0	0.0	0.00
XP-07	21	XJ-05	XHYD-01	6.0	0.0	0.00
XP-08	99	XJ-03	XJ-06	8.0	191.9	1.22
XP-09	225	XJ-06	XJ-07	8.0	42.0	0.27
XP-10		XJ-07	XFV-01	8.0	0.0	0.00
XP-11	30	XJ-07	XJ-08	8.0	39.0	0.25
XP-12	19	XJ-08	XHYD-03	6.0	0.0	0.00
•	•	•	•	. '	'	'

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

WaterGEMS CONNECT Edition Update 1 [10.01.00.72] Page 1 of 2

FlexTable: Pipe Table

Label	Length (Scaled) (ft)	Start Node	Stop Node	Diameter (in)	Flow (Absolute) (gpm)	Velocity (ft/s)
XP-13	210	XJ-08	XFV-02	8.0	19.5	0.12
XP-14	240	XJ-06	XFV-03	8.0	12.0	0.08
XP-15	227	XJ-06	XJ-09	8.0	58.5	0.37
XP-16	79	XJ-09	XFV-05	8.0	0.0	0.00
XP-17	30	XJ-09	XJ-10	8.0	52.5	0.34
XP-19	209	XJ-10	XFV-04	8.0	33.0	0.21
XP-118	19	XJ-10	XHYD-04	6.0	0.0	0.00
XP-120	125	PJ-13	XJ-13	8.0	0.0	0.00

Scenario Summary Report Scenario: MDD

Scenario Summary						
ID		81	81			
Label		MDD				
Notes						
Active Topology		<i> Base Act</i>	tive Topology			
Physical		<i> Base Phy</i>	ysical			
Demand		ADD				
Initial Settings		<i>> Base Init</i>	tial Settings			
Operational		<i> Base Op</i>	erational			
Age		<i> Base Age</i>	e			
Constituent		<i> Base Co</i>	nstituent			
Trace		<i>> Base Tra</i>	ace			
Fire Flow		<i>> Base Fire</i>	e Flow			
Energy Cost		<i>> Base End</i>	ergy Cost			
Transient		<i> Base Tra</i>	ansient			
Pressure Dependent Deman	d	<i>> Base Pressure Dependent Demand</i>				
Failure History		<i>> Base Failure History</i>				
SCADA		<i>> Base SCADA</i>				
User Data Extensions		<i>> Base User Data Extensions</i>				
Steady State/EPS Solver Cale Options	culation	MAX DAY				
Transient Solver Calculation	Options	<i> Base Cal</i>	culation Options			
Hydraulic Summary						
Time Analysis Type	Stead	ly State	Use simple controls during steady state?	True		
Friction Method	\	Hazen- Villiams	Is EPS Snapshot?	False		
Accuracy		0.001	Start Time	12:00:00 AM		
Trials		40	Calculation Type	Hydraulics Only		

FlexTable: Junction Table

Label	ID	Zone	Elevation	Demand	Hydraulic	Pressure
			(ft)	(gpm)	Grade	(psi)
					(ft)	
PJ-01	248	<none></none>	4,640.80	24.0	4,848.58	90
PJ-01A	188	<none></none>	4,640.50	0.0	4,848.36	90
PJ-02	210	<none></none>	4,639.30	33.0	4,848.06	90
PJ-03	212	<none></none>	4,638.20	33.0	4,847.87	91
PJ-04	214	<none></none>	4,638.20	0.0	4,847.87	91
PJ-05	218	<none></none>	4,637.50	0.0	4,847.80	91
PJ-06	220	<none></none>	4,637.70	66.0	4,847.79	91
PJ-07	222	<none></none>	4,639.60	69.0	4,847.83	90
PJ-08	190	<none></none>	4,641.60	0.0	4,848.01	89
PJ-09	192	<none></none>	4,641.80	6.0	4,847.99	89
PJ-10	194	<none></none>	4,642.80	39.0	4,847.94	89
PJ-11	196	<none></none>	4,642.90	0.0	4,847.93	89
PJ-12	198	<none></none>	4,644.20	0.0	4,847.90	88
PJ-13	231	<none></none>	4,645.00	0.0	4,847.90	88
PJ-14	234	<none></none>	4,643.00	0.0	4,847.90	89
PJ-15	236	<none></none>	4,643.00	0.0	4,847.90	89
PJ-16	200	<none></none>	4,643.50	0.0	4,847.89	88
PJ-17	202	<none></none>	4,641.50	75.0	4,847.68	89
PJ-18	204	<none></none>	4,639.20	81.0	4,847.68	90
PJ-19	206	<none></none>	4,638.90	6.0	4,847.69	90
PJ-20	227	<none></none>	4,638.60	15.0	4,847.70	90
PJ-21	225	<none></none>	4,638.40	4.0	4,847.72	91
XFV-01	117	<none></none>	4,646.00	0.0	4,849.15	88
XFV-02	125	<none></none>	4,646.50	39.0	4,849.13	88
XFV-03	126	<none></none>	4,647.00	24.0	4,849.18	87
XFV-04	127	<none></none>	4,646.50	66.0	4,849.08	88
XFV-05	121	<none></none>	4,645.00	0.0	4,849.11	88
XJ-01	107	<none></none>	4,642.70	0.0	4,850.13	90
XJ-02	112	<none></none>	4,643.50	0.0	4,849.66	89
XJ-03	30	<none></none>	4,643.50	0.0	4,849.50	89
XJ-04	101	<none></none>	4,644.50	0.0	4,849.50	89
XJ-05	96	<none></none>	4,644.50	0.0	4,849.50	89
XJ-06	31	<none></none>	4,642.00	158.8	4,849.19	90
XJ-07	55	<none></none>	4,646.00	6.0	4,849.15	88
XJ-08	124	<none></none>	4,643.00	39.0	4,849.14	89
XJ-09	33	<none></none>	4,640.00	12.0	4,849.11	90
XJ-10	123	<none></none>	4,645.00	39.0	4,849.10	88
XJ-11	186	<none></none>	4,640.70	0.0	4,848.39	90
XJ-12	216	<none></none>	4,638.20	0.0	4,847.87	91
XJ-13	159	<none></none>	4,644.90	0.0	4,847.90	88
XJ-14	238	<none></none>	4,643.00	0.0	4,847.90	89
XJ-15	208	<none></none>	4,642.20	0.0	4,847.69	89

FlexTable: Pipe Table

Label	Length (Scaled) (ft)	Start Node	Stop Node	Diameter (in)	Flow (Absolute)	Velocity (ft/s)
					(gpm)	
PP-01	372	XJ-01	PJ-01	8.0	451.0	2.88
PP-02	21	PJ-01	HYD-01	6.0	0.0	0.00
PP-03	50	PJ-01	XJ-11	8.0	427.0	2.73
PP-04	6	XJ-11	PJ-01A	8.0	427.0	2.73
PP-05	403	PJ-01A	PJ-02	8.0	178.0	1.14
PP-06	14	PJ-02	HYD-02	6.0	0.0	0.00
PP-07	377	PJ-02	PJ-03	8.0	145.0	0.93
PP-08	42	PJ-03	PJ-04	8.0	0.0	0.00
PP-09	8	PJ-04	XJ-12	8.0	0.0	0.00
PP-10	215	PJ-03	PJ-05	8.0	112.0	0.72
PP-11	19	PJ-05	HYD-05	6.0	0.0	0.00
PP-12	40	PJ-05	PJ-06	8.0	112.0	0.72
PP-13	377	PJ-06	PJ-07	8.0	64.7	0.41
PP-14	20	PJ-07	HYD-04	6.0	0.0	0.00
PP-15	403	PJ-07	PJ-08	8.0	133.7	0.85
PP-16	255	PJ-01A	PJ-08	8.0	249.0	1.59
PP-17	50	PJ-01A PJ-08	PJ-08	8.0	115.3	0.74
1	20	l				
PP-18		PJ-09	HYD-03	6.0	0.0	0.00
PP-19	187	PJ-09	PJ-10	8.0	109.3	0.70
PP-20	32	PJ-10	PJ-11	8.0	70.3	0.45
PP-21	253	PJ-11	PJ-12	8.0	70.3	0.45
PP-22	39	PJ-12	PJ-16	8.0	70.2	0.45
PP-23	152	PJ-12	PJ-13	8.0	0.0	0.00
PP-24	393	PJ-13	PJ-14	8.0	0.0	0.00
PP-25	40	PJ-14	PJ-15	8.0	0.0	0.00
PP-26	45	PJ-15	XJ-14	8.0	0.0	0.00
PP-27	19	PJ-16	HYD-06	6.0	0.0	0.00
PP-28	402	PJ-16	PJ-17	6.0	70.2	0.80
PP-29	19	PJ-17	HYD-07	6.0	0.0	0.00
PP-30	446	PJ-17	PJ-18	8.0	4.8	0.03
PP-31	20	PJ-18	HYD-08	6.0	0.0	0.00
PP-32	56	PJ-18	PJ-19	8.0	85.8	0.55
PP-33	61	PJ-20	PJ-19	8.0	91.8	0.59
PP-34	51	PJ-21	PJ-20	8.0	106.8	0.68
PP-35	240	PJ-06	PJ-21	8.0	110.8	0.71
PP-36	171	PJ-19	XJ-15	8.0	0.0	0.00
XP-01	55	RES-01	XJ-01	8.0	834.9	5.33
XP-02	150	XJ-01	XJ-02	8.0	383.8	2.45
XP-03	24	XJ-02	XHYD-02	6.0	0.0	0.00
XP-04	54	XJ-02	XJ-03	8.0	383.8	2.45
XP-05	306	XJ-03	XJ-04	8.0	0.0	0.00
XP-06	40	XJ-04	XJ-05	8.0	0.0	0.00
XP-07	21	XJ-05	XHYD-01	6.0	0.0	0.00
XP-08	99	XJ-03	XJ-06	8.0	383.8	2.45
XP-09	225	XJ-06	XJ-07	8.0	84.0	0.54
XP-10		XJ-07	XFV-01	8.0	0.0	0.00
XP-11	30		XJ-08	8.0	78.0	0.50
XP-12		XJ-08	XHYD-03	6.0	0.0	0.00
I''' 12	1 17	1.5 00	17.11.12 03	1 0.0	0.0	0.00

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

WaterGEMS CONNECT Edition Update 1 [10.01.00.72] Page 1 of 2

FlexTable: Pipe Table

Label	Length (Scaled) (ft)	Start Node	Stop Node	Diameter (in)	Flow (Absolute) (gpm)	Velocity (ft/s)
XP-13	210	XJ-08	XFV-02	8.0	39.0	0.25
XP-14	240	XJ-06	XFV-03	8.0	24.0	0.15
XP-15	227	XJ-06	XJ-09	8.0	117.0	0.75
XP-16	79	XJ-09	XFV-05	8.0	0.0	0.00
XP-17	30	XJ-09	XJ-10	8.0	105.0	0.67
XP-19	209	XJ-10	XFV-04	8.0	66.0	0.42
XP-118	19	XJ-10	XHYD-04	6.0	0.0	0.00
XP-120	125	PJ-13	XJ-13	8.0	0.0	0.00

Scenario Summary Report Scenario: MDD plus FF

Scenario Summary							
ID		82	82				
Label		MDD plus FF					
Notes		•					
Active Topology		<i>> Base Acti</i>	ve Topology				
Physical		<i>> Base Phys</i>	sical				
Demand		ADD					
Initial Settings		<i>> Base Initi</i>	al Settings				
Operational		<i> Base Ope</i>	erational				
Age		<i>> Base Age</i>					
Constituent		<i>> Base Con</i>	stituent				
Trace		<i> Base Trac</i>	ce				
Fire Flow		Fire Flow					
Energy Cost		<i>> Base Ene</i>	rgy Cost				
Transient		<i>> Base Trai</i>	<i>> Base Transient</i>				
Pressure Dependent Demand		<i>> Base Pressure Dependent Demand</i>					
Failure History		<i>> Base Failure History</i>					
SCADA		<i>> Base SCADA</i>					
User Data Extensions		<i>> Base User Data Extensions</i>					
Steady State/EPS Solver Calco Options	ulation	MAX DAY					
Transient Solver Calculation (Options	<i> Base Cald</i>	culation Options				
Hydraulic Summary							
Time Analysis Type	Stead	ly State	Use simple controls during steady state?	True			
Friction Method	١	Hazen- Villiams	Is EPS Snapshot?	False			
Accuracy		0.001	Start Time	12:00:00 AM			
Trials		40	Calculation Type	Hydraulics Only			

FlexTable: Pipe Table

Label	Length (Scaled) (ft)	Start Node	Stop Node	Diameter (in)	Flow (Absolute)	Velocity (ft/s)
					(gpm)	
PP-01	372	XJ-01	PJ-01	8.0	1,951.0	12.45
PP-02	21	PJ-01	HYD-01	6.0	0.0	0.00
PP-03	50	PJ-01	XJ-11	8.0	1,927.0	12.30
PP-04	6	XJ-11	PJ-01A	8.0	1,927.0	12.30
PP-05	403	PJ-01A	PJ-02	8.0	645.1	4.12
PP-06	14	PJ-02	HYD-02	6.0	0.0	0.00
PP-07	377	PJ-02	PJ-03	8.0	612.1	3.91
PP-08	42	PJ-03	PJ-04	8.0	0.0	0.00
PP-09	8	PJ-04	XJ-12	8.0	0.0	0.00
PP-10	215	PJ-03	PJ-05	8.0	579.1	3.70
PP-11	19	PJ-05	HYD-05	6.0	0.0	0.00
PP-12	40	PJ-05	PJ-06	8.0	579.1	3.70
PP-13	377	PJ-06	PJ-07	8.0	99.8	0.64
PP-14	20	PJ-07	HYD-04	6.0	0.0	0.00
PP-15	403	PJ-07	PJ-08	8.0	168.8	1.08
PP-15 PP-16	255	PJ-07 PJ-01A	PJ-08	8.0	1,281.9	8.18
PP-10 PP-17	50		PJ-08 PJ-09	8.0		
1		PJ-08			1,113.1	7.10
PP-18	20	PJ-09	HYD-03	6.0	0.0	0.00
PP-19	187	PJ-09	PJ-10	8.0	1,107.1	7.07
PP-20	32	PJ-10	PJ-11	8.0	1,068.1	6.82
PP-21	253	PJ-11	PJ-12	8.0	1,068.1	6.82
PP-22	39	PJ-12	PJ-16	8.0	1,068.1	6.82
PP-23	152	PJ-12	PJ-13	8.0	0.0	0.00
PP-24	393	PJ-13	PJ-14	8.0	0.0	0.00
PP-25	40	PJ-14	PJ-15	8.0	0.0	0.00
PP-26	45	PJ-15	XJ-14	8.0	0.0	0.00
PP-27	19	PJ-16	HYD-06	6.0	1,500.0	17.02
PP-28	402	PJ-16	PJ-17	6.0	431.9	4.90
PP-29	19	PJ-17	HYD-07	6.0	0.0	0.00
PP-30	446	PJ-17	PJ-18	8.0	506.9	3.24
PP-31	20	PJ-18	HYD-08	6.0	0.0	0.00
PP-32	56	PJ-18	PJ-19	8.0	587.9	3.75
PP-33	61	PJ-20	PJ-19	8.0	593.9	3.79
PP-34	51	PJ-21	PJ-20	8.0	608.9	3.89
PP-35	240	PJ-06	PJ-21	8.0	612.9	3.91
PP-36	171	PJ-19	XJ-15	8.0	0.0	0.00
XP-01	55		XJ-01	8.0	2,334.9	14.90
XP-02	150	XJ-01	XJ-02	8.0	383.8	2.45
XP-03	24		XHYD-02	6.0	0.0	0.00
XP-04	54	XJ-02	XJ-03	8.0	383.8	2.45
XP-05	306	XJ-03	XJ-04	8.0	0.0	0.00
XP-06	40	XJ-04	XJ-05	8.0	0.0	0.00
XP-07	21	XJ-05	XHYD-01	6.0	0.0	0.00
XP-08	99	XJ-03	XJ-06	8.0	383.8	2.45
XP-09	225		XJ-07	8.0	84.0	0.54
XP-10		XJ-07	XFV-01	8.0	0.0	0.00
XP-10 XP-11		XJ-07 XJ-07	XJ-08	8.0	78.0	0.50
XP-11 XP-12		XJ-07 XJ-08	XHYD-03	6.0	0.0	0.00
VI -17	I 19	1 10 00	VIII D-03	I 0.0	0.0	0.00

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

WaterGEMS CONNECT Edition Update 1 [10.01.00.72] Page 1 of 2

FlexTable: Pipe Table

Label	Length (Scaled) (ft)	Start Node	Stop Node	Diameter (in)	Flow (Absolute) (gpm)	Velocity (ft/s)
XP-13	210	XJ-08	XFV-02	8.0	39.0	0.25
XP-14	240	XJ-06	XFV-03	8.0	24.0	0.15
XP-15	227	XJ-06	XJ-09	8.0	117.0	0.75
XP-16	79	XJ-09	XFV-05	8.0	0.0	0.00
XP-17	30	XJ-09	XJ-10	8.0	105.0	0.67
XP-19	209	XJ-10	XFV-04	8.0	66.0	0.42
XP-118	19	XJ-10	XHYD-04	6.0	0.0	0.00
XP-120	125	PJ-13	XJ-13	8.0	0.0	0.00

FlexTable: Junction Table

Label ID Zone Elevation Circ Cir			_	=	_		_
PJ-01	Label	ID	Zone				
PJ-01				(π)	(gpm)		(psi)
PJ-01A 188 < None> 4,640.50 0.0 4,821.70 78 PJ-02 210 < None> 4,639.30 33.0 4,818.43 78 PJ-03 212 < None> 4,638.20 33.0 4,815.66 77 PJ-04 214 < None> 4,637.50 0.0 4,815.66 77 PJ-05 218 < None> 4,637.70 66.0 4,813.97 76 PJ-06 220 < None> 4,637.70 66.0 4,813.97 76 PJ-07 222 < None> 4,631.60 0.0 4,814.07 75 PJ-08 190 < None> 4,641.80 6.0 4,814.34 75 PJ-09 192 < None> 4,642.80 39.0 4,809.10 72 PJ-10 194 < None> 4,642.80 39.0 4,809.10 72 PJ-11 196 < None> 4,642.80 39.0 4,803.21 69 PJ-12 1	57.04	240		1.510.00	210		
PJ-02 210 <none> 4,639.30 33.0 4,818.43 78 PJ-03 212 <none> 4,638.20 33.0 4,815.66 77 PJ-04 214 <none> 4,638.20 0.0 4,815.66 77 PJ-05 218 <none> 4,637.50 0.0 4,814.23 76 PJ-06 220 <none> 4,637.70 66.0 4,813.97 76 PJ-07 222 <none> 4,641.60 0.0 4,814.07 75 PJ-08 190 <none> 4,641.80 6.0 4,814.34 75 PJ-09 192 <none> 4,641.80 6.0 4,813.22 74 PJ-10 194 <none> 4,642.80 39.0 4,809.10 72 PJ-11 196 <none> 4,642.80 39.0 4,809.10 72 PJ-11 196 <none> 4,643.00 0.0 4,803.21 69 PJ-12 198</none></none></none></none></none></none></none></none></none></none></none>							
PJ-03 212 <none> 4,638.20 33.0 4,815.66 77 PJ-04 214 <none> 4,638.20 0.0 4,815.66 77 PJ-05 218 <none> 4,637.50 0.0 4,813.97 76 PJ-06 220 <none> 4,637.70 66.0 4,813.97 76 PJ-07 222 <none> 4,637.70 66.0 4,814.34 75 PJ-08 190 <none> 4,641.60 0.0 4,814.34 75 PJ-09 192 <none> 4,642.80 39.0 4,809.10 72 PJ-10 194 <none> 4,642.80 39.0 4,808.44 72 PJ-11 196 <none> 4,642.90 0.0 4,803.21 69 PJ-12 198 <none> 4,643.00 0.0 4,803.21 69 PJ-13 231 <none> 4,643.00 0.0 4,803.21 69 PJ-15 236</none></none></none></none></none></none></none></none></none></none></none>							
PJ-04 214 None> 4,638.20 0.0 4,815.66 77 PJ-05 218 None> 4,637.50 0.0 4,814.23 76 PJ-06 220 None> 4,637.70 66.0 4,813.97 76 PJ-07 222 None> 4,639.60 69.0 4,814.07 75 PJ-08 190 None> 4,641.60 0.0 4,814.34 75 PJ-08 190 None> 4,641.80 6.0 4,813.22 74 PJ-10 194 None> 4,642.80 39.0 4,809.10 72 PJ-11 196 None> 4,642.80 39.0 4,809.10 72 PJ-12 198 None> 4,642.90 0.0 4,803.21 69 PJ-13 231 None> 4,643.00 0.0 4,803.21 69 PJ-13 231 None> 4,643.00 0.0 4,803.21 69 PJ-15 236 None> 4,643.00 0.0 4,803.21 69 PJ-16 200 None> 4,643.00 0.0 4,803.21 69 PJ-17 202 None> 4,643.50 0.0 4,803.21 69 PJ-18 204 None> 4,643.50 0.0 4,803.21 69 PJ-19 206 None> 4,639.20 81.0 4,811.02 74 PJ-19 206 None> 4,638.90 6.0 4,811.40 75 PJ-20 227 None> 4,638.60 15.0 4,811.83 75 PJ-21 225 None> 4,646.00 0.0 4,847.62 87 XFV-01 117 None> 4,646.50 39.0 4,847.61 87 XFV-02 125 None> 4,646.50 39.0 4,847.61 87 XFV-05 121 None> 4,645.50 0.0 4,847.66 87 XFV-05 121 None> 4,645.50 0.0 4,847.66 87 XFV-05 121 None> 4,645.50 0.0 4,847.55 87 XFV-05 121 None> 4,645.50 0.0 4,847.59 88 XJ-04 101 None> 4,645.50 0.0 4,847.97 88 XJ-05 96 None> 4,644.50 0.0 4,847.97 88 XJ-05 96 None> 4,644.50 0.0 4,847.97 88 XJ-06 31 None> 4,644.50 0.0 4,847.97 88 XJ-06 31 None> 4,646.50 39.0 4,847.97 88 XJ-06 31 None> 4,646.50 0.0 4,847.97 88 XJ-07 55 None> 4,646.50 0.0 4,847.97 88 XJ-08 124 None> 4,644.50 0.0 4,847.97 88 XJ-08 124 None> 4,646.50 39.0 4,847.97 88	I I						
PJ-05 218 <none> 4,637.50 0.0 4,814.23 76 PJ-06 220 <none> 4,637.70 66.0 4,813.97 76 PJ-07 222 <none> 4,637.70 66.0 4,814.07 75 PJ-08 190 <none> 4,641.80 6.0 4,814.34 75 PJ-09 192 <none> 4,641.80 6.0 4,813.22 74 PJ-10 194 <none> 4,642.90 0.0 4,809.10 72 PJ-11 196 <none> 4,642.90 0.0 4,809.10 72 PJ-11 196 <none> 4,642.90 0.0 4,803.21 69 PJ-12 198 <none> 4,643.00 0.0 4,803.21 69 PJ-13 231 <none> 4,643.00 0.0 4,803.21 69 PJ-14 234 <none> 4,643.50 0.0 4,803.21 69 PJ-17 202 <</none></none></none></none></none></none></none></none></none></none></none>				-			
PJ-06 220 <none> 4,637.70 66.0 4,813.97 76 PJ-07 222 <none> 4,639.60 69.0 4,814.07 75 PJ-08 190 <none> 4,641.60 0.0 4,814.34 75 PJ-09 192 <none> 4,641.80 6.0 4,813.22 74 PJ-10 194 <none> 4,642.80 39.0 4,809.10 72 PJ-11 196 <none> 4,642.80 39.0 4,809.10 72 PJ-12 198 <none> 4,642.80 39.0 4,808.44 72 PJ-12 198 <none> 4,645.00 0.0 4,803.21 69 PJ-13 231 <none> 4,643.00 0.0 4,803.21 69 PJ-14 234 <none> 4,643.00 0.0 4,803.21 69 PJ-15 236 <none> 4,643.50 0.0 4,802.41 69 PJ-17 202</none></none></none></none></none></none></none></none></none></none></none>	1						
PJ-07 222 <none> 4,639.60 69.0 4,814.07 75 PJ-08 190 <none> 4,641.60 0.0 4,814.34 75 PJ-09 192 <none> 4,641.80 6.0 4,813.22 74 PJ-10 194 <none> 4,642.80 39.0 4,809.10 72 PJ-11 196 <none> 4,642.80 39.0 4,809.10 72 PJ-11 196 <none> 4,642.90 0.0 4,803.21 69 PJ-12 198 <none> 4,645.00 0.0 4,803.21 69 PJ-13 231 <none> 4,643.00 0.0 4,803.21 69 PJ-15 236 <none> 4,643.00 0.0 4,803.21 69 PJ-16 200 <none> 4,643.50 0.0 4,803.21 69 PJ-17 202 <none> 4,639.20 81.0 4,811.02 74 PJ-19 206</none></none></none></none></none></none></none></none></none></none></none>	1						
PJ-08 190 <none> 4,641.60 0.0 4,814.34 75 PJ-09 192 <none> 4,641.80 6.0 4,813.22 74 PJ-10 194 <none> 4,642.80 39.0 4,809.10 72 PJ-11 196 <none> 4,642.90 0.0 4,808.44 72 PJ-12 198 <none> 4,644.20 0.0 4,803.21 69 PJ-13 231 <none> 4,643.00 0.0 4,803.21 69 PJ-14 234 <none> 4,643.00 0.0 4,803.21 69 PJ-15 236 <none> 4,643.00 0.0 4,803.21 69 PJ-16 200 <none> 4,643.50 0.0 4,803.21 69 PJ-17 202 <none> 4,635.00 0.0 4,808.71 72 PJ-18 204 <none> 4,638.90 6.0 4,811.40 75 PJ-20 227 <t< td=""><td>I I</td><td></td><td></td><td></td><td></td><td></td><td></td></t<></none></none></none></none></none></none></none></none></none></none></none>	I I						
PJ-09 192 <none> 4,641.80 6.0 4,813.22 74 PJ-10 194 <none> 4,642.80 39.0 4,809.10 72 PJ-11 196 <none> 4,642.90 0.0 4,808.44 72 PJ-12 198 <none> 4,644.20 0.0 4,803.21 69 PJ-13 231 <none> 4,645.00 0.0 4,803.21 69 PJ-14 234 <none> 4,643.00 0.0 4,803.21 69 PJ-15 236 <none> 4,643.00 0.0 4,803.21 69 PJ-16 200 <none> 4,643.00 0.0 4,803.21 69 PJ-16 200 <none> 4,635.0 0.0 4,808.71 72 PJ-18 204 <none> 4,639.20 81.0 4,811.02 74 PJ-19 206 <none> 4,638.60 15.0 4,811.83 75 PJ-21 225 <</none></none></none></none></none></none></none></none></none></none></none>	1						
PJ-10 194 <none> 4,642.80 39.0 4,809.10 72 PJ-11 196 <none> 4,642.90 0.0 4,808.44 72 PJ-12 198 <none> 4,644.20 0.0 4,803.21 69 PJ-13 231 <none> 4,643.00 0.0 4,803.21 69 PJ-14 234 <none> 4,643.00 0.0 4,803.21 69 PJ-15 236 <none> 4,643.00 0.0 4,803.21 69 PJ-16 200 <none> 4,643.00 0.0 4,803.21 69 PJ-17 202 <none> 4,643.50 0.0 4,802.41 69 PJ-17 202 <none> 4,638.90 6.0 4,811.02 74 PJ-19 206 <none> 4,638.90 6.0 4,811.83 75 PJ-21 225 <none> 4,646.00 0.0 4,847.62 87 XFV-01 117 <</none></none></none></none></none></none></none></none></none></none></none>	1		<none></none>	4,641.60		4,814.34	
PJ-11 196 <none> 4,642.90 0.0 4,808.44 72 PJ-12 198 <none> 4,644.20 0.0 4,803.21 69 PJ-13 231 <none> 4,645.00 0.0 4,803.21 68 PJ-14 234 <none> 4,643.00 0.0 4,803.21 69 PJ-15 236 <none> 4,643.00 0.0 4,803.21 69 PJ-16 200 <none> 4,643.50 0.0 4,802.41 69 PJ-17 202 <none> 4,631.50 75.0 4,808.71 72 PJ-18 204 <none> 4,639.20 81.0 4,811.02 74 PJ-19 206 <none> 4,638.90 6.0 4,811.83 75 PJ-20 227 <none> 4,638.40 4.0 4,812.20 75 XFV-01 117 <none> 4,646.00 0.0 4,847.61 87 XFV-02 125</none></none></none></none></none></none></none></none></none></none></none>	PJ-09	192	<none></none>				74
PJ-12 198 <none> 4,644.20 0.0 4,803.21 69 PJ-13 231 <none> 4,645.00 0.0 4,803.21 68 PJ-14 234 <none> 4,643.00 0.0 4,803.21 69 PJ-15 236 <none> 4,643.00 0.0 4,803.21 69 PJ-16 200 <none> 4,643.50 0.0 4,802.41 69 PJ-17 202 <none> 4,6343.50 0.0 4,808.71 72 PJ-18 204 <none> 4,639.20 81.0 4,811.40 75 PJ-19 206 <none> 4,638.90 6.0 4,811.40 75 PJ-20 227 <none> 4,638.40 4.0 4,812.20 75 XFV-01 117 <none> 4,646.00 0.0 4,847.61 87 XFV-02 125 <none> 4,646.50 39.0 4,847.55 87 XFV-03 126</none></none></none></none></none></none></none></none></none></none></none>	1				39.0		
PJ-13 231 <none> 4,645.00 0.0 4,803.21 68 PJ-14 234 <none> 4,643.00 0.0 4,803.21 69 PJ-15 236 <none> 4,643.00 0.0 4,803.21 69 PJ-16 200 <none> 4,643.50 0.0 4,803.21 69 PJ-17 202 <none> 4,641.50 75.0 4,808.71 72 PJ-18 204 <none> 4,639.20 81.0 4,811.02 74 PJ-19 206 <none> 4,638.60 15.0 4,811.83 75 PJ-20 227 <none> 4,638.60 15.0 4,811.83 75 PJ-21 225 <none> 4,646.00 0.0 4,847.62 87 XFV-01 117 <none> 4,646.50 39.0 4,847.61 87 XFV-02 125 <none> 4,645.50 39.0 4,847.55 87 XFV-04 127</none></none></none></none></none></none></none></none></none></none></none>	PJ-11	196	<none></none>	4,642.90	0.0	4,808.44	72
PJ-14 234 <none> 4,643.00 0.0 4,803.21 69 PJ-15 236 <none> 4,643.00 0.0 4,803.21 69 PJ-16 200 <none> 4,643.50 0.0 4,802.41 69 PJ-17 202 <none> 4,641.50 75.0 4,808.71 72 PJ-18 204 <none> 4,639.20 81.0 4,811.02 74 PJ-19 206 <none> 4,638.90 6.0 4,811.40 75 PJ-20 227 <none> 4,638.60 15.0 4,811.83 75 PJ-21 225 <none> 4,638.40 4.0 4,812.20 75 XFV-01 117 <none> 4,646.00 0.0 4,847.62 87 XFV-02 125 <none> 4,646.50 39.0 4,847.61 87 XFV-03 126 <none> 4,645.50 66.0 4,847.55 87 XFV-05 121</none></none></none></none></none></none></none></none></none></none></none>	PJ-12	198	<none></none>	4,644.20	0.0	4,803.21	69
PJ-15 236 <none> 4,643.00 0.0 4,803.21 69 PJ-16 200 <none> 4,643.50 0.0 4,802.41 69 PJ-17 202 <none> 4,641.50 75.0 4,808.71 72 PJ-18 204 <none> 4,639.20 81.0 4,811.02 74 PJ-19 206 <none> 4,638.90 6.0 4,811.40 75 PJ-20 227 <none> 4,638.60 15.0 4,811.83 75 PJ-21 225 <none> 4,638.40 4.0 4,812.20 75 XFV-01 117 <none> 4,646.00 0.0 4,847.62 87 XFV-02 125 <none> 4,646.50 39.0 4,847.61 87 XFV-03 126 <none> 4,646.50 66.0 4,847.55 87 XFV-04 127 <none> 4,645.00 0.0 4,847.59 88 XJ-01 107</none></none></none></none></none></none></none></none></none></none></none>	PJ-13	231	<none></none>	4,645.00	0.0	4,803.21	68
PJ-16 200 <none> 4,643.50 0.0 4,802.41 69 PJ-17 202 <none> 4,641.50 75.0 4,808.71 72 PJ-18 204 <none> 4,639.20 81.0 4,811.02 74 PJ-19 206 <none> 4,638.90 6.0 4,811.40 75 PJ-20 227 <none> 4,638.60 15.0 4,811.83 75 PJ-21 225 <none> 4,638.40 4.0 4,812.20 75 XFV-01 117 <none> 4,646.00 0.0 4,847.62 87 XFV-02 125 <none> 4,646.50 39.0 4,847.61 87 XFV-03 126 <none> 4,647.00 24.0 4,847.66 87 XFV-04 127 <none> 4,645.00 0.0 4,847.55 87 XFV-05 121 <none> 4,642.70 0.0 4,848.61 89 XJ-02 112</none></none></none></none></none></none></none></none></none></none></none>	PJ-14	234	<none></none>	4,643.00	0.0	4,803.21	69
PJ-17 202 <none> 4,641.50 75.0 4,808.71 72 PJ-18 204 <none> 4,639.20 81.0 4,811.02 74 PJ-19 206 <none> 4,638.90 6.0 4,811.40 75 PJ-20 227 <none> 4,638.60 15.0 4,811.83 75 PJ-21 225 <none> 4,638.40 4.0 4,812.20 75 XFV-01 117 <none> 4,646.00 0.0 4,847.62 87 XFV-02 125 <none> 4,646.50 39.0 4,847.61 87 XFV-03 126 <none> 4,645.50 39.0 4,847.66 87 XFV-04 127 <none> 4,645.50 66.0 4,847.55 87 XFV-05 121 <none> 4,645.00 0.0 4,847.59 88 XJ-01 107 <none> 4,643.50 0.0 4,847.97 88 XJ-03 30</none></none></none></none></none></none></none></none></none></none></none>	PJ-15	236	<none></none>	4,643.00	0.0	4,803.21	69
PJ-18 204 <none> 4,639.20 81.0 4,811.02 74 PJ-19 206 <none> 4,638.90 6.0 4,811.40 75 PJ-20 227 <none> 4,638.60 15.0 4,811.83 75 PJ-21 225 <none> 4,638.40 4.0 4,812.20 75 XFV-01 117 <none> 4,646.00 0.0 4,847.62 87 XFV-02 125 <none> 4,646.50 39.0 4,847.61 87 XFV-03 126 <none> 4,645.00 24.0 4,847.66 87 XFV-04 127 <none> 4,645.00 0.0 4,847.55 87 XFV-05 121 <none> 4,645.00 0.0 4,847.59 88 XJ-01 107 <none> 4,642.70 0.0 4,848.61 89 XJ-02 112 <none> 4,643.50 0.0 4,847.97 88 XJ-04 101</none></none></none></none></none></none></none></none></none></none></none>	PJ-16	200	<none></none>	4,643.50	0.0	4,802.41	69
PJ-19 206 <none> 4,638.90 6.0 4,811.40 75 PJ-20 227 <none> 4,638.60 15.0 4,811.83 75 PJ-21 225 <none> 4,638.40 4.0 4,812.20 75 XFV-01 117 <none> 4,646.00 0.0 4,847.62 87 XFV-02 125 <none> 4,646.50 39.0 4,847.61 87 XFV-03 126 <none> 4,647.00 24.0 4,847.66 87 XFV-04 127 <none> 4,645.00 0.0 4,847.55 87 XFV-05 121 <none> 4,645.00 0.0 4,847.59 88 XJ-01 107 <none> 4,643.50 0.0 4,848.61 89 XJ-02 112 <none> 4,643.50 0.0 4,847.97 88 XJ-03 30 <none> 4,644.50 0.0 4,847.97 88 XJ-04 101</none></none></none></none></none></none></none></none></none></none></none>	PJ-17	202	<none></none>	4,641.50	75.0	4,808.71	72
PJ-20 227 <none> 4,638.60 15.0 4,811.83 75 PJ-21 225 <none> 4,638.40 4.0 4,812.20 75 XFV-01 117 <none> 4,646.00 0.0 4,847.62 87 XFV-02 125 <none> 4,646.50 39.0 4,847.61 87 XFV-03 126 <none> 4,647.00 24.0 4,847.66 87 XFV-04 127 <none> 4,645.00 0.0 4,847.55 87 XFV-05 121 <none> 4,645.00 0.0 4,847.59 88 XJ-01 107 <none> 4,642.70 0.0 4,848.61 89 XJ-02 112 <none> 4,643.50 0.0 4,847.97 88 XJ-03 30 <none> 4,643.50 0.0 4,847.97 88 XJ-04 101 <none> 4,644.50 0.0 4,847.97 88 XJ-05 96</none></none></none></none></none></none></none></none></none></none></none>	PJ-18	204	<none></none>	4,639.20	81.0	4,811.02	74
PJ-21 225 <none> 4,638.40 4.0 4,812.20 75 XFV-01 117 <none> 4,646.00 0.0 4,847.62 87 XFV-02 125 <none> 4,646.50 39.0 4,847.61 87 XFV-03 126 <none> 4,647.00 24.0 4,847.66 87 XFV-04 127 <none> 4,645.00 0.0 4,847.55 87 XFV-05 121 <none> 4,645.00 0.0 4,847.59 88 XJ-01 107 <none> 4,642.70 0.0 4,848.61 89 XJ-02 112 <none> 4,643.50 0.0 4,848.14 89 XJ-03 30 <none> 4,643.50 0.0 4,847.97 88 XJ-04 101 <none> 4,644.50 0.0 4,847.97 88 XJ-05 96 <none> 4,642.00 158.8 4,847.62 87 XJ-08 124</none></none></none></none></none></none></none></none></none></none></none>	PJ-19	206	<none></none>	4,638.90	6.0	4,811.40	75
XFV-01 117 <none> 4,646.00 0.0 4,847.62 87 XFV-02 125 <none> 4,646.50 39.0 4,847.61 87 XFV-03 126 <none> 4,647.00 24.0 4,847.66 87 XFV-04 127 <none> 4,646.50 66.0 4,847.55 87 XFV-05 121 <none> 4,645.00 0.0 4,847.59 88 XJ-01 107 <none> 4,642.70 0.0 4,848.61 89 XJ-02 112 <none> 4,643.50 0.0 4,848.14 89 XJ-03 30 <none> 4,643.50 0.0 4,847.97 88 XJ-04 101 <none> 4,644.50 0.0 4,847.97 88 XJ-05 96 <none> 4,644.50 0.0 4,847.97 88 XJ-06 31 <none> 4,642.00 158.8 4,847.66 89 XJ-08 124 <none> 4,643.00 39.0 4,847.62 89 XJ-10</none></none></none></none></none></none></none></none></none></none></none></none>	PJ-20	227	<none></none>	4,638.60	15.0	4,811.83	75
XFV-02 125 <none> 4,646.50 39.0 4,847.61 87 XFV-03 126 <none> 4,647.00 24.0 4,847.66 87 XFV-04 127 <none> 4,646.50 66.0 4,847.55 87 XFV-05 121 <none> 4,645.00 0.0 4,847.59 88 XJ-01 107 <none> 4,642.70 0.0 4,848.61 89 XJ-02 112 <none> 4,643.50 0.0 4,848.14 89 XJ-03 30 <none> 4,643.50 0.0 4,847.97 88 XJ-04 101 <none> 4,644.50 0.0 4,847.97 88 XJ-05 96 <none> 4,644.50 0.0 4,847.97 88 XJ-06 31 <none> 4,642.00 158.8 4,847.66 89 XJ-07 55 <none> 4,643.00 39.0 4,847.62 87 XJ-08 124 <none> 4,643.00 39.0 4,847.59 90 XJ-10</none></none></none></none></none></none></none></none></none></none></none></none>	PJ-21	225	<none></none>	4,638.40	4.0	4,812.20	75
XFV-03 126 <none> 4,647.00 24.0 4,847.66 87 XFV-04 127 <none> 4,646.50 66.0 4,847.55 87 XFV-05 121 <none> 4,645.00 0.0 4,847.59 88 XJ-01 107 <none> 4,642.70 0.0 4,848.61 89 XJ-02 112 <none> 4,643.50 0.0 4,847.97 88 XJ-03 30 <none> 4,644.50 0.0 4,847.97 88 XJ-04 101 <none> 4,644.50 0.0 4,847.97 88 XJ-05 96 <none> 4,642.00 158.8 4,847.66 89 XJ-06 31 <none> 4,642.00 158.8 4,847.62 87 XJ-08 124 <none> 4,640.00 39.0 4,847.59 90 XJ-10 123 <none> 4,640.00 12.0 4,847.58 88 XJ-11 186 <none> 4,645.00 39.0 4,847.58 88 XJ-12</none></none></none></none></none></none></none></none></none></none></none></none>	XFV-01	117	<none></none>	4,646.00	0.0	4,847.62	87
XFV-04 127 <none> 4,646.50 66.0 4,847.55 87 XFV-05 121 <none> 4,645.00 0.0 4,847.59 88 XJ-01 107 <none> 4,642.70 0.0 4,848.61 89 XJ-02 112 <none> 4,643.50 0.0 4,847.97 88 XJ-03 30 <none> 4,644.50 0.0 4,847.97 88 XJ-04 101 <none> 4,644.50 0.0 4,847.97 88 XJ-05 96 <none> 4,644.50 0.0 4,847.97 88 XJ-06 31 <none> 4,642.00 158.8 4,847.66 89 XJ-07 55 <none> 4,646.00 6.0 4,847.62 87 XJ-08 124 <none> 4,643.00 39.0 4,847.59 90 XJ-10 123 <none> 4,645.00 39.0 4,847.58 88 XJ-11 186 <none> 4,640.70 0.0 4,822.09 78 XJ-12 <td< td=""><td>XFV-02</td><td>125</td><td><none></none></td><td>4,646.50</td><td>39.0</td><td>4,847.61</td><td>87</td></td<></none></none></none></none></none></none></none></none></none></none></none></none>	XFV-02	125	<none></none>	4,646.50	39.0	4,847.61	87
XFV-05 121 <none> 4,645.00 0.0 4,847.59 88 XJ-01 107 <none> 4,642.70 0.0 4,848.61 89 XJ-02 112 <none> 4,643.50 0.0 4,848.14 89 XJ-03 30 <none> 4,643.50 0.0 4,847.97 88 XJ-04 101 <none> 4,644.50 0.0 4,847.97 88 XJ-05 96 <none> 4,644.50 0.0 4,847.97 88 XJ-06 31 <none> 4,642.00 158.8 4,847.66 89 XJ-07 55 <none> 4,646.00 6.0 4,847.62 87 XJ-08 124 <none> 4,643.00 39.0 4,847.52 89 XJ-09 33 <none> 4,645.00 39.0 4,847.58 88 XJ-11 186 <none> 4,645.00 39.0 4,847.58 88 XJ-12 216 <t< td=""><td>XFV-03</td><td>126</td><td><none></none></td><td>4,647.00</td><td>24.0</td><td>4,847.66</td><td>87</td></t<></none></none></none></none></none></none></none></none></none></none></none>	XFV-03	126	<none></none>	4,647.00	24.0	4,847.66	87
XJ-01 107 <none> 4,642.70 0.0 4,848.61 89 XJ-02 112 <none> 4,643.50 0.0 4,848.14 89 XJ-03 30 <none> 4,643.50 0.0 4,847.97 88 XJ-04 101 <none> 4,644.50 0.0 4,847.97 88 XJ-05 96 <none> 4,644.50 0.0 4,847.97 88 XJ-06 31 <none> 4,642.00 158.8 4,847.66 89 XJ-07 55 <none> 4,646.00 6.0 4,847.62 87 XJ-08 124 <none> 4,643.00 39.0 4,847.62 89 XJ-09 33 <none> 4,640.00 12.0 4,847.59 90 XJ-10 123 <none> 4,645.00 39.0 4,847.58 88 XJ-11 186 <none> 4,640.70 0.0 4,822.09 78 XJ-12 216 <none> 4,643.00 0.0 4,803.21 68 XJ-14 23</none></none></none></none></none></none></none></none></none></none></none></none>	XFV-04	127	<none></none>	4,646.50	66.0	4,847.55	87
XJ-02 112 <none> 4,643.50 0.0 4,848.14 89 XJ-03 30 <none> 4,643.50 0.0 4,847.97 88 XJ-04 101 <none> 4,644.50 0.0 4,847.97 88 XJ-05 96 <none> 4,644.50 0.0 4,847.97 88 XJ-06 31 <none> 4,642.00 158.8 4,847.66 89 XJ-07 55 <none> 4,646.00 6.0 4,847.62 87 XJ-08 124 <none> 4,643.00 39.0 4,847.62 89 XJ-09 33 <none> 4,640.00 12.0 4,847.59 90 XJ-10 123 <none> 4,645.00 39.0 4,847.58 88 XJ-11 186 <none> 4,640.70 0.0 4,822.09 78 XJ-12 216 <none> 4,638.20 0.0 4,815.66 77 XJ-13 159 <none> 4,644.90 0.0 4,803.21 68 XJ-14 23</none></none></none></none></none></none></none></none></none></none></none></none>	XFV-05	121	<none></none>	4,645.00	0.0	4,847.59	88
XJ-03 30 <none> 4,643.50 0.0 4,847.97 88 XJ-04 101 <none> 4,644.50 0.0 4,847.97 88 XJ-05 96 <none> 4,644.50 0.0 4,847.97 88 XJ-06 31 <none> 4,642.00 158.8 4,847.66 89 XJ-07 55 <none> 4,646.00 6.0 4,847.62 87 XJ-08 124 <none> 4,643.00 39.0 4,847.62 89 XJ-09 33 <none> 4,640.00 12.0 4,847.59 90 XJ-10 123 <none> 4,645.00 39.0 4,847.58 88 XJ-11 186 <none> 4,640.70 0.0 4,822.09 78 XJ-12 216 <none> 4,643.00 0.0 4,815.66 77 XJ-13 159 <none> 4,644.90 0.0 4,803.21 68 XJ-14 238 <none> 4,643.00 0.0 4,803.21 69</none></none></none></none></none></none></none></none></none></none></none></none>	XJ-01	107	<none></none>	4,642.70	0.0	4,848.61	89
XJ-04 101 <none> 4,644.50 0.0 4,847.97 88 XJ-05 96 <none> 4,644.50 0.0 4,847.97 88 XJ-06 31 <none> 4,642.00 158.8 4,847.66 89 XJ-07 55 <none> 4,646.00 6.0 4,847.62 87 XJ-08 124 <none> 4,643.00 39.0 4,847.62 89 XJ-09 33 <none> 4,640.00 12.0 4,847.59 90 XJ-10 123 <none> 4,645.00 39.0 4,847.58 88 XJ-11 186 <none> 4,640.70 0.0 4,822.09 78 XJ-12 216 <none> 4,638.20 0.0 4,815.66 77 XJ-13 159 <none> 4,644.90 0.0 4,803.21 68 XJ-14 238 <none> 4,643.00 0.0 4,803.21 69</none></none></none></none></none></none></none></none></none></none></none>	XJ-02	112	<none></none>	4,643.50	0.0	4,848.14	89
XJ-05 96 <none> 4,644.50 0.0 4,847.97 88 XJ-06 31 <none> 4,642.00 158.8 4,847.66 89 XJ-07 55 <none> 4,646.00 6.0 4,847.62 87 XJ-08 124 <none> 4,643.00 39.0 4,847.62 89 XJ-09 33 <none> 4,640.00 12.0 4,847.59 90 XJ-10 123 <none> 4,645.00 39.0 4,847.58 88 XJ-11 186 <none> 4,640.70 0.0 4,822.09 78 XJ-12 216 <none> 4,644.90 0.0 4,815.66 77 XJ-13 159 <none> 4,644.90 0.0 4,803.21 68 XJ-14 238 <none> 4,643.00 0.0 4,803.21 69</none></none></none></none></none></none></none></none></none></none>	XJ-03	30	<none></none>	4,643.50	0.0	4,847.97	88
XJ-06 31 <none> 4,642.00 158.8 4,847.66 89 XJ-07 55 <none> 4,646.00 6.0 4,847.62 87 XJ-08 124 <none> 4,643.00 39.0 4,847.62 89 XJ-09 33 <none> 4,640.00 12.0 4,847.59 90 XJ-10 123 <none> 4,645.00 39.0 4,847.58 88 XJ-11 186 <none> 4,640.70 0.0 4,822.09 78 XJ-12 216 <none> 4,638.20 0.0 4,815.66 77 XJ-13 159 <none> 4,644.90 0.0 4,803.21 68 XJ-14 238 <none> 4,643.00 0.0 4,803.21 69</none></none></none></none></none></none></none></none></none>	XJ-04	101	<none></none>	4,644.50	0.0	4,847.97	88
XJ-07 55 <none> 4,646.00 6.0 4,847.62 87 XJ-08 124 <none> 4,643.00 39.0 4,847.62 89 XJ-09 33 <none> 4,640.00 12.0 4,847.59 90 XJ-10 123 <none> 4,645.00 39.0 4,847.58 88 XJ-11 186 <none> 4,640.70 0.0 4,822.09 78 XJ-12 216 <none> 4,638.20 0.0 4,815.66 77 XJ-13 159 <none> 4,644.90 0.0 4,803.21 68 XJ-14 238 <none> 4,643.00 0.0 4,803.21 69</none></none></none></none></none></none></none></none>	XJ-05	96	<none></none>	4,644.50	0.0	4,847.97	88
XJ-08 124 <none> 4,643.00 39.0 4,847.62 89 XJ-09 33 <none> 4,640.00 12.0 4,847.59 90 XJ-10 123 <none> 4,645.00 39.0 4,847.58 88 XJ-11 186 <none> 4,640.70 0.0 4,822.09 78 XJ-12 216 <none> 4,648.20 0.0 4,815.66 77 XJ-13 159 <none> 4,644.90 0.0 4,803.21 68 XJ-14 238 <none> 4,643.00 0.0 4,803.21 69</none></none></none></none></none></none></none>	XJ-06	31	<none></none>	4,642.00	158.8	4,847.66	89
XJ-09 33 <none> 4,640.00 12.0 4,847.59 90 XJ-10 123 <none> 4,645.00 39.0 4,847.58 88 XJ-11 186 <none> 4,640.70 0.0 4,822.09 78 XJ-12 216 <none> 4,638.20 0.0 4,815.66 77 XJ-13 159 <none> 4,644.90 0.0 4,803.21 68 XJ-14 238 <none> 4,643.00 0.0 4,803.21 69</none></none></none></none></none></none>	XJ-07	55	<none></none>	4,646.00	6.0	4,847.62	87
XJ-09 33 <none> 4,640.00 12.0 4,847.59 90 XJ-10 123 <none> 4,645.00 39.0 4,847.58 88 XJ-11 186 <none> 4,640.70 0.0 4,822.09 78 XJ-12 216 <none> 4,638.20 0.0 4,815.66 77 XJ-13 159 <none> 4,644.90 0.0 4,803.21 68 XJ-14 238 <none> 4,643.00 0.0 4,803.21 69</none></none></none></none></none></none>	XJ-08						89
XJ-10 123 <none> 4,645.00 39.0 4,847.58 88 XJ-11 186 <none> 4,640.70 0.0 4,822.09 78 XJ-12 216 <none> 4,638.20 0.0 4,815.66 77 XJ-13 159 <none> 4,644.90 0.0 4,803.21 68 XJ-14 238 <none> 4,643.00 0.0 4,803.21 69</none></none></none></none></none>	XJ-09	33					
XJ-11 186 <none> 4,640.70 0.0 4,822.09 78 XJ-12 216 <none> 4,638.20 0.0 4,815.66 77 XJ-13 159 <none> 4,644.90 0.0 4,803.21 68 XJ-14 238 <none> 4,643.00 0.0 4,803.21 69</none></none></none></none>							
XJ-12 216 <none> 4,638.20 0.0 4,815.66 77 XJ-13 159 <none> 4,644.90 0.0 4,803.21 68 XJ-14 238 <none> 4,643.00 0.0 4,803.21 69</none></none></none>							
XJ-13 159 <none> 4,644.90 0.0 4,803.21 68 XJ-14 238 <none> 4,643.00 0.0 4,803.21 69</none></none>							
XJ-14 238 <none> 4,643.00 0.0 4,803.21 69</none>	1						
	1						
	XJ-15	208	<none></none>	4,642.20	0.0	4,811.40	73

FlexTable: Hydrant Table

ID	Label	Hydrant Status	Elevation (ft)	Zone	Demand (gpm)	Hydraulic Grade (ft)	Pressure (psi)
100	XHYD-01	Closed	4,644.50	<none></none>	0.0	4,847.97	88
115	XHYD-02	Closed	4,643.50	<none></none>	0.0	4,848.14	89
128	XHYD-03	Closed	4,643.00	<none></none>	0.0	4,847.62	89
129	XHYD-04	Closed	4,645.00	<none></none>	0.0	4,847.58	88
240	HYD-06	Open	4,643.50	<none></none>	1,500.0	4,799.42	67
241	HYD-07	Closed	4,641.50	<none></none>	0.0	4,808.71	72
242	HYD-08	Closed	4,639.20	<none></none>	0.0	4,811.02	74
243	HYD-05	Closed	4,637.50	<none></none>	0.0	4,814.23	76
244	HYD-04	Closed	4,639.60	<none></none>	0.0	4,814.07	75
245	HYD-03	Closed	4,641.80	<none></none>	0.0	4,813.22	74
246	HYD-01	Closed	4,640.80	<none></none>	0.0	4,825.17	80
247	HYD-02	Closed	4,639.30	<none></none>	0.0	4,818.43	78

Scenario Summary Report Scenario: PHD

Scenario Summary									
ID		84							
Label		PHD							
Notes									
Active Topology		<i> Base A</i>	ctive Topology						
Physical		<i> Base Ph</i>	nysical						
Demand		ADD							
Initial Settings		<i>> Base In</i>	itial Settings						
Operational		<i> Base O</i>	perational						
Age		<i> Base Ag</i>	ge						
Constituent		<i> Base Co</i>	onstituent						
Trace		<i> Base Tr</i>	ace						
Fire Flow		<i>> Base Fi</i>	re Flow						
Energy Cost		<i>> Base Energy Cost</i>							
Transient		<i> Base Tr</i>	<i>> Base Transient</i>						
Pressure Dependent Demai	nd	<i>> Base Pressure Dependent Demand</i>							
Failure History		<i>> Base Failure History</i>							
SCADA		<i>> Base SCADA</i>							
User Data Extensions		<i>> Base User Data Extensions</i>							
Steady State/EPS Solver Ca Options	lculation	PEAK HOUR							
Transient Solver Calculation	Options	<i>> Base Calculation Options</i>							
Hydraulic Summary									
Time Analysis Type	Time Analysis Type Stead		Use simple controls during steady state?	True					
Friction Method	,	Hazen- Villiams	Is EPS Snapshot?	False					
Accuracy	Accuracy		Start Time	12:00:00 AM					
Trials		40	Calculation Type	Hydraulics Only					

FlexTable: Pipe Table

		Iabie				
Label	Length (Scaled) (ft)	Start Node	Stop Node	Diameter (in)	Flow (Absolute) (gpm)	Velocity (ft/s)
PP-01	372	XJ-01	PJ-01	8.0	676.5	4.32
PP-02	21	PJ-01	HYD-01	6.0	0.0	0.00
PP-03	50	PJ-01	XJ-11	8.0	640.5	4.09
PP-04	6	XJ-11	PJ-01A	8.0	640.5	4.09
PP-05	403	PJ-01A	PJ-02	8.0	267.1	1.70
PP-06	14	PJ-02	HYD-02	6.0	0.0	0.00
PP-07	377	PJ-02	PJ-03	8.0	217.6	1.39
PP-08	42	PJ-03	PJ-04	8.0	0.0	0.00
PP-09	8	PJ-04	XJ-12	8.0	0.0	0.00
PP-10	215	PJ-03	PJ-05	8.0	168.1	1.07
PP-11	19	PJ-05	HYD-05	6.0	0.0	0.00
PP-12	40	PJ-05	PJ-06	8.0	168.0	1.07
PP-13	377	PJ-06	PJ-07	8.0	97.1	0.62
PP-14	20	PJ-07	HYD-04	6.0	0.0	0.00
PP-15	403	PJ-07	PJ-08	8.0	200.6	1.28
PP-16	255	PJ-01A	PJ-08	8.0	373.5	2.38
PP-17	50	PJ-08	PJ-09	8.0	172.9	1.10
PP-18	20	PJ-09	HYD-03	6.0	0.0	0.00
PP-19	187	PJ-09	PJ-10	8.0	163.9	1.05
PP-20	32	PJ-10	PJ-11	8.0	105.4	0.67
PP-21	253	PJ-11	PJ-12	8.0	105.4	0.67
PP-22	39	PJ-12	PJ-16	8.0	105.4	0.67
PP-23	152	PJ-12	PJ-13	8.0	0.0	0.00
PP-24	393	PJ-13	PJ-14	8.0	0.0	0.00
PP-25	40	PJ-14	PJ-15	8.0	0.0	0.00
PP-26	45	PJ-15	XJ-14	8.0	0.0	0.00
PP-27	19	PJ-16	HYD-06	6.0	0.0	0.00
PP-28	402	PJ-16	PJ-17	6.0	105.4	1.20
PP-29	19	PJ-17	HYD-07	6.0	0.0	0.00
PP-30	446	PJ-17	PJ-18	8.0	7.1	0.05
PP-31	20	PJ-18	HYD-08	6.0	0.0	0.00
PP-32	56	PJ-18	PJ-19	8.0	128.6	0.82
PP-33	61	PJ-20	PJ-19	8.0	137.6	0.88
PP-34	51	PJ-21	PJ-20	8.0	160.1	1.02
PP-35	240	PJ-06	PJ-21	8.0	166.1	1.06
PP-36		PJ-19	XJ-15	8.0	0.0	0.00
XP-01	55	RES-01	XJ-01	8.0	1,252.3	7.99
XP-02	150	XJ-01	XJ-02	8.0	575.7	3.67
XP-03	24	XJ-02	XHYD-02	6.0	0.0	0.00
XP-04	54	XJ-02	XJ-03	8.0	575.7	3.67
XP-05	306	XJ-02 XJ-03	XJ-03	8.0	0.0	0.00
XP-06	40	XJ-04	XJ-05	8.0	0.0	0.00
XP-00	21	XJ-05	XHYD-01	6.0	0.0	0.00
XP-07 XP-08	99	XJ-03	XJ-06	8.0	575.7	3.67
XP-08 XP-09	225	XJ-03 XJ-06	XJ-06 XJ-07	8.0	126.0	0.80
XP-09 XP-10	64			8.0		
_	· ·	XJ-07	XFV-01 XJ-08		0.0	0.00
XP-11	30	XJ-07	XJ-08 XHYD-03	8.0	117.0	0.75
XP-12	I 19	XJ-08	VUID-03	6.0	0.0	0.00

FlexTable: Pipe Table

Label	Length (Scaled) (ft)	Start Node	Stop Node	Diameter (in)	Flow (Absolute) (gpm)	Velocity (ft/s)
XP-13	210	XJ-08	XFV-02	8.0	58.5	0.37
XP-14	240	XJ-06	XFV-03	8.0	36.0	0.23
XP-15	227	XJ-06	XJ-09	8.0	175.5	1.12
XP-16	79	XJ-09	XFV-05	8.0	0.0	0.00
XP-17	30	XJ-09	XJ-10	8.0	157.5	1.01
XP-19	209	XJ-10	XFV-04	8.0	99.0	0.63
XP-118	19	XJ-10	XHYD-04	6.0	0.0	0.00
XP-120	125	PJ-13	XJ-13	8.0	0.0	0.00

FlexTable: Junction Table

		_				_
Label	ID	Zone	Elevation	Demand	Hydraulic Grade	Pressure
			(ft)	(gpm)	(ft)	(psi)
D1 01	240	Manas	4 640 00	36.0		00
PJ-01	248	<none></none>	4,640.80		4,846.54	89
PJ-01A	188	<none></none>	4,640.50	0.0	4,846.09	89
PJ-02	210	<none></none>	4,639.30	49.5	4,845.45	89
PJ-03	212	<none></none>	4,638.20	49.5	4,845.04	89
PJ-04	214	<none></none>	4,638.20	0.0	4,845.04	89
PJ-05	218	<none></none>	4,637.50	0.0	4,844.90	90
PJ-06	220	<none></none>	4,637.70	99.0	4,844.87	90
PJ-07	222	<none></none>	4,639.60	103.5	4,844.96	89
PJ-08	190	<none></none>	4,641.60	0.0	4,845.34	88
PJ-09	192	<none></none>	4,641.80	9.0	4,845.30	88
PJ-10	194	<none></none>	4,642.80	58.5	4,845.18	88
PJ-11	196	<none></none>	4,642.90	0.0	4,845.17	88
PJ-12	198	<none></none>	4,644.20	0.0	4,845.10	87
PJ-13	231	<none></none>	4,645.00	0.0	4,845.10	87
PJ-14	234	<none></none>	4,643.00	0.0	4,845.10	87
PJ-15	236	<none></none>	4,643.00	0.0	4,845.10	87
PJ-16	200	<none></none>	4,643.50	0.0	4,845.09	87
PJ-17	202	<none></none>	4,641.50	112.5	4,844.63	88
PJ-18	204	<none></none>	4,639.20	121.5	4,844.63	89
PJ-19	206	<none></none>	4,638.90	9.0	4,844.65	89
PJ-20	227	<none></none>	4,638.60	22.5	4,844.68	89
PJ-21	225	<none></none>	4,638.40	6.0	4,844.71	89
XFV-01	117	<none></none>	4,646.00	0.0	4,847.75	87
XFV-02	125	<none></none>	4,646.50	58.5	4,847.72	87
XFV-03	126	<none></none>	4,647.00	36.0	4,847.82	87
XFV-04	127	<none></none>	4,646.50	99.0	4,847.60	87
XFV-05	121	<none></none>	4,645.00	0.0	4,847.67	88
XJ-01	107	<none></none>	4,642.70	0.0	4,849.83	90
XJ-02	112	<none></none>	4,643.50	0.0	4,848.84	89
XJ-03	30	<none></none>	4,643.50	0.0	4,848.49	89
XJ-04	101	<none></none>	4,644.50	0.0	4,848.49	88
XJ-05	96	<none></none>	4,644.50	0.0	4,848.49	88
XJ-06	31	<none></none>	4,642.00	238.2	4,847.83	89
XJ-07	55	<none></none>	4,646.00	9.0	4,847.75	87
XJ-08	124	<none></none>	4,643.00	58.5	4,847.73	89
XJ-09	33	<none></none>	4,640.00	18.0	4,847.67	90
XJ-10	123	<none></none>	4,645.00	58.5	4,847.65	88
XJ-11	186	<none></none>	4,640.70	0.0	4,846.14	89
XJ-12	216	<none></none>	4,638.20	0.0	4,845.04	89
XJ-13	159	<none></none>	4,644.90	0.0	4,845.10	87
XJ-14	238	<none></none>	4,643.00	0.0	4,845.10	87
XJ-15	208	<none></none>	4,642.20	0.0	4,844.65	88

APPENDIX B

Fire Flow Test Data Sheet

Location of Test (Street and Cross Street): Parkland Ave. and Coronet Way

Address Nearest Residual Hydrant: 1037 Parkland Ave

Test Date: 7/26/2016 Test Time: 930

Testing Personnel: MT, CB, LE

Pressure Zone: 4880 Main Size: 12"/6"

Comments:

Test Results:

		-	Toot Hoodito	-					
Residual Hydrant			Flow Hydrant(s)						
Static: Residual:	96 psi 90 psi			Pitot Pressure (psi)	Discharge Diameter (in)	Outlet Coeff. (c)	Pitot Flow (gpm)		
Pressure	6 psi	Flow 1	HM1	28	2	1.307	825		
Drop:	6 %	Flow 2	HM2	32	2	1.307	882		
		Flow 3			J				
				- 274.72		Total	1708		

Area Map

Rated Flow

Rated Pressure (for Rated Capacity Calculation)

20 psi

Rated Capacity at 20 psi residual pressure.

6,700 gpm

Based on NFPA 291 - 2016 Edition and APWA Manual 17 - Fourth Edition

Pursuant to NFPA 291, fire flow test data over five years old should not be used.

Hydrant OBJECTID: 1776

Data Sheet File Name: Parkland-Coronet.pdf

FD Runbook Page: 131X00